
mbuild
Release 0.17.1

Mosdef Team

May 10, 2024

Getting Started

1 mBuild is a part of the MoSDeF ecosystem 2
1.1 Example System . 2

1.2 Installation . 4

1.3 Quick Start . 8

1.4 File Writers . 13

1.5 Tutorials . 23

1.6 Recipe Development . 49

1.7 Data Structures . 51

1.8 Loading Data . 79

1.9 Coordinate Transformations . 80

1.10 Recipes . 82

1.11 Units . 94

1.12 Citing mBuild . 95

1.13 Older Documentation . 95

References 96

Python Module Index 97

licenselicense MITMIT 1 A hierarchical, component based molecule builder

With just a few lines of mBuild code, you can assemble reusable components into complex molecular
systems for molecular simulations.

• mBuild is designed to minimize or even eliminate the need to explicitly translate and orient
components when building systems: you simply tell it to connect two pieces!

• mBuild keeps track of the system’s topology so you don’t have to worry about manually defining
bonds when constructing chemically bonded structures from smaller components.

1 http://opensource.org/licenses/MIT

1

http://opensource.org/licenses/MIT

1 mBuild is a part of the MoSDeF ecosystem

The mBuild software, in conjunction with the other Molecular Simulation Design Framework (MoS-
DeF)2 tools, supports a wide range of simulation engines, including Cassandra3, GPU Optimized
Monte Carlo (GOMC)4, GROMACS5, HOOMD-blue6, and Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS)7. The mBuild and MoSDeF tools allow simulation reproducibility
across the various simulation engines, eliminating the need to be an expert user in all the engines
to replicate, continue, or advance the existing research. Additionally, the software can auto-generate
many different systems, allowing large-scale screening of chemicals and materials using Signac8 to
manage the simulations and data.

The MoSDeF9 software is comprised the following packages:

• mBuild10 – A hierarchical, component based molecule builder

• foyer11 – A package for atom-typing as well as applying and disseminating forcefields

• GMSO12 – Flexible storage of chemical topology for molecular simulation

1.1 Example System

Components in dashed boxes are drawn by hand using, e.g., Avogadro13 or generated elsewhere.
mBuild14 builds up complex systems from simple building blocks through simple attachment sites,
called a Port (i.e., connection points). Each building block is a python class that can be customized or
created through the pre-built options in the mBuild library (mbuild.lib). A hierarchical structure
of parents and children is created through these classes, which can be easily parsed or modified.
This allows mBuild15 to generate chemical structures in a piecemeal fashion by creating or importing
molecular sections, adding ports, and connecting the ports to form bonds. Together with Signac16, this
functionality enables an automatic and dynamic method for generating chemical systems, allowing
large-scale chemical and materials screening with minimal user interaction.

Ultimately, complex systems can be created with just a line or two of code. Additionally, this approach
seamlessly exposes tunable parameters within the hierarchy so you can actually create whole families
of structures by adjusting a variable or two:

pattern = Random2DPattern(20) # A random arrangement of 20 pieces on a 2D␣
↪→surface.
brush_layer = BrushLayer(chain_lenth=20, pattern=pattern, tile_x=3, tile_y=2)

licenselicense MITMIT 17 Various sub-portions of this library may be independently distributed under different
licenses. See those files for their specific terms.

2 https://mosdef.org
3 https://cassandra.nd.edu
4 http://gomc.eng.wayne.edu
5 https://www.gromacs.org
6 http://glotzerlab.engin.umich.edu/hoomd-blue/
7 https://lammps.sandia.gov
8 https://signac.io
9 https://mosdef.org

10 https://mbuild.mosdef.org/en/stable/
11 https://foyer.mosdef.org/en/stable/
12 https://gmso.mosdef.org/en/stable/
13 https://avogadro.cc
14 https://mbuild.mosdef.org/en/stable/
15 https://mbuild.mosdef.org/en/stable/
16 https://signac.io
17 http://opensource.org/licenses/MIT

2

https://mosdef.org
https://mosdef.org
https://cassandra.nd.edu
http://gomc.eng.wayne.edu
http://gomc.eng.wayne.edu
https://www.gromacs.org
http://glotzerlab.engin.umich.edu/hoomd-blue/
https://lammps.sandia.gov
https://lammps.sandia.gov
https://signac.io
https://mosdef.org
https://mbuild.mosdef.org/en/stable/
https://foyer.mosdef.org/en/stable/
https://gmso.mosdef.org/en/stable/
https://avogadro.cc
https://mbuild.mosdef.org/en/stable/
https://mbuild.mosdef.org/en/stable/
https://signac.io
http://opensource.org/licenses/MIT

Fig. 1: Zwitterionic brushes on beta-cristobalite substrate. Example system that can be created using
mBuild. Components in dashed boxes are created from some external tool like Avogadro or SMILES
strings. Components in solid boxes are created from these smaller dashed components and then
constructed into larger, more complex systems using mBuild functionality.

3

1.2 Installation

Installation

Install with condaPage 4, 18

$ conda install -c conda-forge mbuild

Alternatively you can add all the required channels to your .condarc after which you can simply
install without specifying the channels:

$ conda config --add channels conda-forge
$ conda install mbuild

Note: The order in which channels are added matters: conda-forge should be the highest priority
as a result of being added last. In your .condarc file, it should be listed first.

Note: Because packmol binaries are unavailable for windows from conda-forge channel, to use
mbuild with conda in a Windows system requires the omnia channel. Use the following command to
use mbuild with conda in a Windows system:

$ conda install -c conda-forge -c omnia mbuild

Note: The MDTraj website19 makes a nice case for using Python and in particular the Anaconda
scientific python distribution20 to manage your numerical and scientific Python packages.

Install an editable version from source

To make your life easier, we recommend that you use a pre-packaged Python distribution like Mini-
conda21 in order to get all of the dependencies:

$ git clone https://github.com/mosdef-hub/mbuild
$ cd mbuild
$ conda env create -f environment-dev.yml
$ conda activate mbuild-dev
$ pip install -e .

Note: The above installation is for OSX and Unix. If you are using Windows, use environment-
win.yml instead of environment-dev.yml

18 https://repo.anaconda.com/miniconda/
19 http://mdtraj.org/1.9.3/new_to_python.html
20 https://www.anaconda.com/products/individual
21 https://docs.conda.io/en/latest/miniconda.html

4

http://mdtraj.org/1.9.3/new_to_python.html
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

Install pre-commit

We use pre-commit22 to automatically handle our code formatting and this package is included in
the dev environment. With the mbuild-dev conda environment active, pre-commit can be installed
locally as a git hook by running:

$ pre-commit install

And (optional) all files can be checked by running:

$ pre-commit run --all-files

Supported Python Versions

Python 3.9, 3.10 and 3.11 are officially supported, including testing during development and packag-
ing. Support for Python 2.7 has been dropped as of August 6, 2019. Other Python versions, such as
3.12 and 3.8 and older, may successfully build and function but no guarantee is made.

Testing your installation

mBuild uses py.test23 for unit testing. To run them simply run the following while in the base directory:

$ conda install pytest
$ py.test -v

Building the documentation

mBuild uses sphinx24 to build its documentation. To build the docs locally, run the following while in
the docs directory:

$ cd docs
$ conda env create -f docs-env.yml
$ conda activate mbuild-docs
$ make html

Using mBuild with Docker

Docker and other containerization technologies allow entire applications and their dependencies to be
packaged and distributed as images. This simplifies the installation process for the user and substan-
tially reduces platform dependence (e.g., different compiler versions, libraries, etc). This section is a
how-to guide for using mBuild with docker.

22 https://pre-commit.com/
23 https://docs.pytest.org/en/stable/
24 https://www.sphinx-doc.org/en/master/index.html

5

https://pre-commit.com/
https://docs.pytest.org/en/stable/
https://www.sphinx-doc.org/en/master/index.html

Prerequisites

A docker installation on your machine. This Docker installation documentation25 has instructions to
get docker running on your machine. If you are not familiar with docker, the Internet is full of good
tutorials like these from Docker curriculum26 and YouTube27.

Jupyter Quick Start

After you have a working docker installation, use the following command to start a Jupyter notebook
with mBuild and all the required dependencies:

$ docker pull mosdef/mbuild:latest
$ docker run -it --name mbuild -p 8888:8888 mosdef/mbuild:latest

If no command is provided to the container (as above), the container starts a jupyter-notebook at
the (container) location /home/anaconda/data. To access the notebook, paste the notebook URL into
a web browser on your computer. When you are finished, you can use control-C to exit the notebook
as usual. The docker container will exit upon notebook shutdown.

Warning: Containers by nature are ephemeral, so filesystem changes (e.g., adding a new notebook)
only persists until the end of the container’s lifecycle. If the container is removed, any changes or
code additions will not persist. See the section below for persistent data.

Note: The -it flags connect your keyboard to the terminal running in the container. You may run the
prior command without those flags, but be aware that the container will not respond to any keyboard
input. In that case, you would need to use the docker ps and docker kill commands to shut down
the container.

Persisting User Volumes

If you are using mBuild from a docker container and need access to data on your local machine
or you wish to save files generated in the container, you can mount user volumes in the container.
User volumes will provide a way to persist filesystem changes made to a container regardless of
the container lifecycle. For example, you might want to create a directory called mbuild-notebooks
on your local system, which will store all of your mBuild notebooks/code. In order to make that
accessible from within the container (where the notebooks will be created/edited), use the following
steps:

$ mkdir mbuild-notebooks
$ cd mbuild-notebooks/
$ docker run -it --name mbuild --mount type=bind,source=$(pwd),target=/home/
↪→anaconda/data -p 8888:8888 mosdef/mbuild:latest

You can easily mount a different directory from your local machine by changing source=$(pwd) to
source=/path/to/my/favorite/directory.

25 https://docs.docker.com/get-docker/
26 https://docker-curriculum.com/
27 https://www.youtube.com/watch?v=zJ6WbK9zFpI&feature=youtu.be

6

https://docs.docker.com/get-docker/
https://docker-curriculum.com/
https://www.youtube.com/watch?v=zJ6WbK9zFpI&feature=youtu.be

Note: The --mount flag mounts a volume into the docker container. Here we use a bind mount
to bind the current directory on our local filesystem to the /home/anaconda/data location in the
container. The files you see in the jupyter-notebook browser window are those that exist on your
local machine.

Warning: If you are using the container with jupyter notebooks you should use the /home/
anaconda/data location as the mount point inside the container; this is the default notebook
directory.

Running Python scripts in the container

Jupyter notebooks are a great way to explore new software and prototype code. However, when it
comes time for production science, it is often better to work with python scripts. In order to execute a
python script (example.py) that exists in the current working directory of your local machine, run:

$ docker run --mount type=bind,source=$(pwd),target=/home/anaconda/data mosdef/
↪→mbuild:latest "python data/test.py"

Note that once again we are bind mounting the current working directory to /home/anaconda/data.
The command we pass to the container is python data/test.py. Note the prefix data/ to the script;
this is because we enter the container in the home folder (/home/anaconda), but our script is located
under /home/anaconda/data.

Warning: Do not bind mount to target=/home/anaconda. This will cause errors.

If you don’t require a Jupyter notebook, but just want a Python interpreter, you can run:

$ docker run --mount type=bind,source=$(pwd),target=/home/anaconda/data mosdef/
↪→mbuild:latest python

If you don’t need access to any local data, you can of course drop the --mount command:

$ docker run mosdef/mbuild:latest python

7

Different mBuild versions

Instead of using latest, you can use the image mosdef/mbuild:stable for most recent stable release
of mBuild.

Cleaning Up

You can remove the container by using the following command.

$ docker container rm mbuild

The image will still exist on your machine. See the tutorials at the top of this page for more information.

Warning: You will not be able to start a second container with the same name (e.g., mbuild), until
the first container has been removed.

Note: You do not need to name the container mbuild as shown in the above examples (--name
mbuild). Docker will give each container a name automatically. To see all the containers on your
machine, run docker ps -a.

1.3 Quick Start

licenselicense MITMIT 28

The MoSDeFPage 8, 29 software is comprised the following packages:

• mBuild30 – A hierarchical, component based molecule builder

• foyer31 – A package for atom-typing as well as applying and disseminating forcefields

• GMSO32 – Flexible storage of chemical topology for molecular simulation

Note: foyer and GMSO are used together with mBuild to create all the required files to conduct the
simulations. Run time parameters for a simulation engine need to be created by the user.

In the following examples, different types of simulation boxes are constructed using the MoSDeF
software.

Molecular simulations are usually comprised of many molecules contained in a box (NPT and NVT
ensembles), or boxes (GEMC and GCMC ensembles). The mBuild library allows for easy generation
of the simulation box or boxes utilizing only a few lines of python code.

The following tutorials are available either as html or interactive jupyter33 notebooks.

28 http://opensource.org/licenses/MIT
29 https://mosdef.org
30 https://mbuild.mosdef.org/en/stable/
31 https://foyer.mosdef.org/en/stable/
32 https://gmso.mosdef.org/en/stable/
33 https://jupyter.org/

8

http://opensource.org/licenses/MIT
https://mosdef.org
https://mbuild.mosdef.org/en/stable/
https://foyer.mosdef.org/en/stable/
https://gmso.mosdef.org/en/stable/
https://jupyter.org/

Load files

mol2 files

Create an mbuild.Compound (i.e., the “pentane” variable) by loading a molecule from a mol234 file.

Import the required mbuild packages.

import mbuild as mb

Load the “pentane.mol2” file from its directory.

pentane = mb.load("path_to_mol2_file/pentane.mol2")

CIF files

Build an mbuild.Compound (i.e., the “ETV_triclinic” variable) by loading a Crystallographic Informa-
tion File (CIF)35 file and selecting the number of cell units to populate in the x, y, and z-dimensions.

Import the required mbuild packages.

import mbuild as mb
from mbuild.lattice import load_cif

The CIF36 file is loaded using the load_cif function. Next, three (3) cell units shall be built for all the
x, y, and z-dimensions with the populate function. Finally, the CIF37’s residues are named ‘ETV’.

lattice_cif_ETV_triclinic = load_cif("path_to_cif_file/ETV_triclinic.cif")
ETV_triclinic = lattice_cif_ETV_triclinic.populate(x=3, y=3, z=3)
ETV_triclinic.name = 'ETV'

Other file types

mBuild also supports Loading Data or files via hoomd_snapshot, GSD, SMILES strings, and ParmEd
structures.

Box

Import the required mbuild package.

import mbuild as mb

34 http://chemyang.ccnu.edu.cn/ccb/server/AIMMS/mol2.pdf
35 https://www.iucr.org/resources/cif
36 https://www.iucr.org/resources/cif
37 https://www.iucr.org/resources/cif

9

http://chemyang.ccnu.edu.cn/ccb/server/AIMMS/mol2.pdf
https://www.iucr.org/resources/cif
https://www.iucr.org/resources/cif
https://www.iucr.org/resources/cif
https://www.iucr.org/resources/cif

Orthogonal Box

Build an empty orthogonal mBuild Box (i.e., the angle in degrees are = 90, = 90, = 90) measuring 4.0
nm in all the x, y, and z-dimensions.

Note: Note: if the angles are not specified, the system will default to an orthogonal box (i.e., the angle
in degrees are = 90, = 90, = 90).

empty_box = mb.Box(lengths=[4.0, 4.0, 4.0], angles=[90, 90, 90])

Non-Orthogonal Box

Build an empty non-orthogonal mBuild Box (i.e., the angle in degrees are = 90, = 90, = 120) measuring
4.0 nm in the x and y-dimensions, and 5.0 nm in the z-dimension.

empty_box = mb.Box(lengths=[4.0, 4.0, 5.0], angles=[90, 90, 120])

Fill Box

All-Atom (AA) Hexane and Ethanol System

Note: foyer38 is used in conjunction with mBuild in the following example to demonstrate how the
MoSDeF39 libraries can be used together to generate a simulation box.

Import the required mbuild package.

import mbuild as mb

Construct an all-atom (AA) hexane and ethanol using the OPLS-AA force field (FF), which is shipped
as a standard foyer40 FF. The hexane and ethanol molecules will be created using smiles strings41. The
hexane and ethanol residues will be named “HEX” and “ETO”, respectively. Lastly, the hexane and
ethanol molecule’s configuration will be energy minimized, properly reorienting the molecule to the
specified FF, which is sometimes needed for some simulation engines to ensure the initial configuration
energy is not too high.

Note: The energy minimize step requires the foyer42 package.

hexane = mb.load('CCCCCC', smiles=True)
hexane.name = 'HEX'
hexane.energy_minimize(forcefield='oplsaa', steps=10**4)

ethanol = mb.load('CCO', smiles=True)
(continues on next page)

38 https://foyer.mosdef.org/en/stable/
39 https://mosdef.org
40 https://foyer.mosdef.org/en/stable/
41 https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
42 https://foyer.mosdef.org/en/stable/

10

https://foyer.mosdef.org/en/stable/
https://mosdef.org
https://foyer.mosdef.org/en/stable/
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://foyer.mosdef.org/en/stable/

(continued from previous page)

ethanol.name = 'ETO'
ethanol.energy_minimize(forcefield='oplsaa', steps=10**4)

The liquid box is built to a density of 680 kg/m3, with a 50/50 mol ratio of hexane and ethanol, and
will be in an orthogonal box measuring 5.0 nm in the x, y, and z-dimensions.

box_liq = mb.fill_box(compound= [hexane, ethanol],
density=680,
compound_ratio=[0.5, 0.5],
box=[5.0, 5.0, 5.0])

United Atom (UA) Methane System

Note: foyer43 is used in conjunction with mBuild in the following example to demonstrate how the
MoSDeF44 libraries integrate to generate a simulation box. A subset of the TraPPE-United Atom45

force field (FF) comes standard with the foyer46 software package.

Import the required mbuild package.

import mbuild as mb

Construct a pseudo-monatomic molecule (united atom (UA) methane), for use with the TraPPE47 FF.
The UA methane, bead type “_CH4”, will be built as a child (mbuild.Compound.children), so the
parent (mbuild.Compound) will allow a user-selected residue name (mbuild.Compound.name). If the
methane is built using methane = mb.Compound(name="_CH4"), then the user must keep the residue
name “_CH4” or foyer48 will not recognize the bead type when using the standard TraPPE force field
XML file.

methane = mb.Compound(name="MET")
methane_child_bead = mb.Compound(name="_CH4")
methane.add(methane_child_bead, inherit_periodicity=False)

Note: The inherit_periodicity flag is an optional boolean (default=True), which replaces the
periodicity of self with the periodicity of the Compound being added.

The orthogonal liquid box contains 1230 methane molecules and measures 4.5 nm in all the x, y, and
z-dimensions.

box_liq = mb.fill_box(compound=methane,
n_compounds=1230,
box=[4.5, 4.5, 4.5]
)

43 https://foyer.mosdef.org/en/stable/
44 https://mosdef.org
45 http://trappe.oit.umn.edu
46 https://foyer.mosdef.org/en/stable/
47 http://trappe.oit.umn.edu
48 https://foyer.mosdef.org/en/stable/

11

https://foyer.mosdef.org/en/stable/
https://mosdef.org
http://trappe.oit.umn.edu
https://foyer.mosdef.org/en/stable/
http://trappe.oit.umn.edu
https://foyer.mosdef.org/en/stable/

Polymer

Use two (2) different monomer units, A and B, to construct a polymer, capping it with a carboxylic
acid and amine end group.

Import the required mbuild packages.

import mbuild as mb
from mbuild.lib.recipes.polymer import Polymer

Create the monomer units comp_1 and comp_2 using SMILES strings49. Set the chain as a Polymer
class, adding comp_1 and comp_2 as the monomers A and B to the polymer.

Note: Setting the indices identifies which atoms will be removed and have ports created in their
place.

comp_1 = mb.load('CC', smiles=True) # mBuild compound of the monomer unit
comp_2 = mb.load('COC', smiles=True) # mBuild compound of the monomer unit
chain = Polymer()
chain.add_monomer(compound=comp_1,

indices=[2, -2],
separation=.15,
replace=True)

chain.add_monomer(compound=comp_2,
indices=[3, -1],
separation=.15,
replace=True)

Select the carboxylic acid and amine end groups that we want to use for the head and tail of the
polymer. Then, build the polymer with three (3) iterations of the AB sequence, and the selected head
and tail end groups.

chain.add_end_groups(mb.load('C(=O)O',smiles=True),
index=3,
separation=0.15,
duplicate=False,
label="head")

chain.add_end_groups(mb.load('N', smiles=True),
index=-1,
separation=0.13,
duplicate=False,
label="tail")

chain.build(n=3, sequence='AB')
chain.visualize()

49 https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

12

https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

Fig. 2: This example polymer is 3 of the AB sequences together with carboxylic acid and amine end
groups.

1.4 File Writers

The mBuild library also supports simulation engine-specific file writers. These writers create a com-
plete set of simulation writers to input files or a partial set of file writers, where the other required
files are generated via another means.

mBuild utilizes ParmEd to write Compound information to a variety of file formats (e.g. PDB, MOL2,
GRO. The full list of formats supported by ParmEd can be found at the ParmEd website50). Addition-
ally, mBuild features several internal writers for file formats not yet supported by ParmEd. Information
on these internal writers can be found below.

By default, many mBuild functions will only write coordinate and bond information to these files,
i.e. no angles or dihedrals, and no atom typing is performed (atom names are used as atom types).
However, force fields can be applied to Compounds by passing force field XML files (used by the
Foyer package51) to the Compound.save function if Foyer is installed. If a force field is applied to
a Compound, the mBuild internal writers will also write angle and dihedral information to the file
in addition to labelling atoms by the atom types specified by the force field. The CHARMM-style
GOMC writers (supported through the MoSDeF-GOMC extension52) are the exception to this default
rule since they need a force field to build the files, as these files depend on the force field parameters
(Example: charge and MW in the PSF files).

The simulation engine writers that use mBuild or are currently contained in the mBuild library:

• Cassandra53

• GROMACS54

• HOOMD-blue55

• Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)56

Support for GPU Optimized Monte Carlo (GOMC)57 is also available through the MoSDeF-GOMC

50 http://parmed.github.io/ParmEd/html/readwrite.html
51 https://github.com/mosdef-hub/foyer
52 https://github.com/GOMC-WSU/MoSDeF-GOMC
53 https://cassandra.nd.edu/
54 https://www.gromacs.org/
55 http://glotzerlab.engin.umich.edu/hoomd-blue//
56 https://lammps.sandia.gov/
57 http://gomc.eng.wayne.edu/

13

http://parmed.github.io/ParmEd/html/readwrite.html
https://github.com/mosdef-hub/foyer
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://cassandra.nd.edu/
https://www.gromacs.org/
http://glotzerlab.engin.umich.edu/hoomd-blue//
https://lammps.sandia.gov/
http://gomc.eng.wayne.edu/
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC

library58

Cassandra File Writers

Cassandra Molecular Connectivity format.

https://cassandra-mc.readthedocs.io/en/latest/guides/input_files.html#
molecular-connectivity-file

mbuild.formats.cassandramcf.write_mcf(structure, filename, angle_style, dihedral_style,
lj14=None, coul14=None)

Output a Cassandra molecular connectivity file (MCF).

Outputs a Cassandra MCF from a Parmed structure object.

Parameters

structure
[parmed.Structure] ParmEd structure object

filename
[str] Path of the output file

angle_style
[str] Type of angles. ‘fixed’ and ‘harmonic’ are valid choices

dihedral_style
[str] Type of dihedrals. ‘harmonic’, ‘OPLS’, ‘CHARMM’, and ‘none’ are
valid choices

lj14
[float] Scaling factor for LJ interactions on 1-4 pairs

coul14
[float] Scaling factor for Coulombic interactions on 1-4 pairs

Notes

See https://cassandra.nd.edu/index.php/documentation for a complete description
of the MCF format.

HOOMD-blue File Writers

Write GSD (General Simulation Data)

Default data file format for HOOMD-blue

GSD format.

https://gsd.readthedocs.io/en/stable/

mbuild.formats.gsdwriter.write_gsd(structure, filename, ref_distance=1.0,
ref_mass=1.0, ref_energy=1.0, rigid_bodies=None,
shift_coords=True, write_special_pairs=True,
**kwargs)

Output a GSD file (HOOMD v2 default data format).

Parameters

58 https://github.com/GOMC-WSU/MoSDeF-GOMC

14

https://github.com/GOMC-WSU/MoSDeF-GOMC
https://github.com/GOMC-WSU/MoSDeF-GOMC
https://cassandra-mc.readthedocs.io/en/latest/guides/input_files.html#molecular-connectivity-file
https://cassandra-mc.readthedocs.io/en/latest/guides/input_files.html#molecular-connectivity-file
https://cassandra.nd.edu/index.php/documentation
https://gsd.readthedocs.io/en/stable/

structure
[parmed.Structure] ParmEd Structure object

filename
[str] Path of the output file.

ref_distance
[float, optional, default=1.0] Reference distance for conversion to re-
duced units

ref_mass
[float, optional, default=1.0] Reference mass for conversion to reduced
units

ref_energy
[float, optional, default=1.0] Reference energy for conversion to reduced
units

rigid_bodies
[list of int, optional, default=None] List of rigid body information. An
integer value is required for each atom corresponding to the index of
the rigid body the particle is to be associated with. A value of None
indicates the atom is not part of a rigid body.

shift_coords
[bool, optional, default=True] Shift coordinates from (0, L) to (-L/2,
L/2) if necessary.

write_special_pairs
[bool, optional, default=True] Writes out special pair information nec-
essary to correctly use the OPLS fudged 1,4 interactions in HOOMD.

Notes

Force field parameters are not written to the GSD file and must be included manually
into a HOOMD input script.

Create HOOMD-blue force field (>= 3.0)

HOOMD v3 forcefield format.

mbuild.formats.hoomd_forcefield.create_hoomd_forcefield(structure, r_cut,
ref_distance=1.0,
ref_mass=1.0,
ref_energy=1.0,
auto_scale=False,
nlist_buffer=0.4,
snapshot_kwargs={},
pppm_kwargs={'Nx':
8, 'Ny': 8, 'Nz': 8,
'order': 4},
init_snap=None)

Convert a parametrized pmd.Structure to a HOOMD snapshot and forces.

Parameters

structure
[parmed.Structure] ParmEd Structure object

15

r_cut
[float] Cutoff radius in simulation units

ref_distance
[float, optional, default=1.0] Reference distance for unit conversion
((Angstrom) / (desired units))

ref_mass
[float, optional, default=1.0] Reference mass for unit conversion ((Dal-
ton) / (desired units))

ref_energy
[float, optional, default=1.0] Reference energy for unit conversion
((kcal/mol) / (desired units))

auto_scale
[bool, optional, default=False] Scale to reduced units by automatically
using the largest sigma value as ref_distance, largest mass value as
ref_mass, and largest epsilon value as ref_energy

nlist_buffer
[float, optional, default=True] buffer argument to pass to
hoomd.md.nlist.Cell

snapshot_kwargs
[dict] Keyword arguments to pass to to_hoomdsnapshot

pppm_kwargs
[dict] Keyword arguments to pass to
hoomd.md.long_range.pppm.make_pppm_coulomb_forces

init_snap
[hoomd.Snapshot, optional, default=None] Initial snapshot to which to
add the ParmEd structure object (useful for rigid bodies)

Returns

hoomd_snapshot
[hoomd.Snapshot] HOOMD snapshot object to initialize the simulation

hoomd_forcefield
[list[hoomd.md.force.Force]] List of hoomd force computes created dur-
ing conversion

ReferenceValues
[namedtuple] Values used in scaling

Notes

If you pass a non-parametrized pmd.Structure, you will not have angle, dihedral,
or force field information. You may be better off creating a hoomd.Snapshot. See
mbuild.formats.hoomd_snapshot.to_hoomdsnapshot()

About units: This method operates on a Parmed.Structure object where the units used
differ from those used in mBuild and Foyer which may have been used when creating
the typed Parmed.Structure.

The default units used when writing out the HOOMD Snapshot are: Distance
(Angstrom) Mass (Dalton) Energy (kcal/mol)

If you wish to convert this unit system to another, you can use the reference pa-
rameters (ref_distance, ref_mass, ref_energy). The values used here should be ex-

16

pected to convert from the Parmed Structure units (above) to your desired units. The
Parmed.Structure values are divided by the reference values.

If you wish to used a reduced unit system, set auto_scale = True. When auto_scale is
True, the reference parameters won’t be used.

Examples

To convert the energy units from kcal/mol to kj/mol:
use ref_energy = 0.2390057 (kcal/kj)

To convert the distance units from Angstrom to nm:
use ref_distance = 10 (angstroms/nm)

To use a reduced unit system, where mass, sigma, and epsilon are scaled by the largest
value of each:

use auto_scale = True, ref_distance = ref_energy = ref_mass = 1

Create HOOMD-blue Simulation (v2.x)

HOOMD simulation format.

mbuild.formats.hoomd_simulation.create_hoomd_simulation(structure, r_cut,
ref_distance=1.0,
ref_mass=1.0,
ref_energy=1.0,
auto_scale=False,
snapshot_kwargs={},
pppm_kwargs={'Nx':
8, 'Ny': 8, 'Nz': 8,
'order': 4},
init_snap=None,
restart=None,
nlist=<Mock
name='mock.md.nlist.cell'
id='139724620147728'>)

Convert a parametrized pmd.Structure to hoomd.SimulationContext.

Parameters

structure
[parmed.Structure] ParmEd Structure object

r_cut
[float] Cutoff radius in simulation units

ref_distance
[float, optional, default=1.0] Reference distance for unit conversion
(from Angstrom)

ref_mass
[float, optional, default=1.0] Reference mass for unit conversion (from
Dalton)

ref_energy
[float, optional, default=1.0] Reference energy for unit conversion (from
kcal/mol)

17

auto_scale
[bool, optional, default=False] Scale to reduced units by automatically
using the largest sigma value as ref_distance, largest mass value as
ref_mass, and largest epsilon value as ref_energy

snapshot_kwargs
[dict] Kwargs to pass to to_hoomdsnapshot

pppm_kwargs
[dict] Kwargs to pass to hoomd’s pppm function

init_snap
[hoomd.data.SnapshotParticleData, optional, default=None] Initial
snapshot to which to add the ParmEd structure object (useful for rigid
bodies)

restart
[str, optional, default=None] Path to the gsd file from which to
restart the simulation. https://hoomd-blue.readthedocs.io/en/v2.9.4/
restartable-jobs.html Note: It is assumed that the ParmEd structure and
the system in restart.gsd contain the same types. The ParmEd structure
is still used to initialize the forces, but restart.gsd is used to initialize
the system state (e.g., particle positions, momenta, etc).

nlist
[hoomd.md.nlist, default=hoomd.md.nlist.cell] Type of neigh-
borlist to use, see https://hoomd-blue.readthedocs.io/en/stable/
module-md-nlist.html for more information.

Returns

hoomd_objects
[list] List of hoomd objects created during conversion

ReferenceValues
[namedtuple] Values used in scaling

HOOMD-blue Snapshot

HOOMD snapshot format.

mbuild.formats.hoomd_snapshot.from_snapshot(snapshot, scale=1.0)
Convert a Snapshot to a Compound.

Snapshot can be a hoomd.Snapshot or a gsd.hoomd.Frame.

Parameters

snapshot
[hoomd.Snapshot or gsd.hoomd.Frame] Snapshot from which to build
the mbuild Compound.

scale
[float, optional, default 1.0] Value by which to scale the length values

Returns

comp
[Compound]

18

https://hoomd-blue.readthedocs.io/en/v2.9.4/restartable-jobs.html
https://hoomd-blue.readthedocs.io/en/v2.9.4/restartable-jobs.html
https://hoomd-blue.readthedocs.io/en/stable/module-md-nlist.html
https://hoomd-blue.readthedocs.io/en/stable/module-md-nlist.html

mbuild.formats.hoomd_snapshot.to_hoomdsnapshot(structure, ref_distance=1.0,
ref_mass=1.0, ref_energy=1.0,
rigid_bodies=None,
shift_coords=True,
write_special_pairs=True,
auto_scale=False,
parmed_kwargs={},
hoomd_snapshot=None)

Convert a Compound or parmed.Structure to hoomd.Snapshot.

Parameters

structure
[parmed.Structure] ParmEd Structure object Reference distance for unit
conversion ((Angstrom) / (desired units))

ref_mass
[float, optional, default=1.0] Reference mass for unit conversion ((Dal-
ton) / (desired units))

ref_energy
[float, optional, default=1.0] Reference energy for unit conversion
((kcal/mol) / (desired units))

rigid_bodies
[list of int, optional, default=None] List of rigid body information. An
integer value is required for each atom corresponding to the index of
the rigid body the particle is to be associated with. A value of None
indicates the atom is not part of a rigid body.

shift_coords
[bool, optional, default=True] Shift coordinates from (0, L) to (-L/2,
L/2) if necessary.

auto_scale
[bool, optional, default=False] Automatically use largest sigma value as
ref_distance, largest mass value as ref_mass and largest epsilon value
as ref_energy

write_special_pairs
[bool, optional, default=True] Writes out special pair information nec-
essary to correctly use the OPLS fudged 1,4 interactions in HOOMD.

hoomd_snapshot
[hoomd.Snapshot, optional, default=None] Initial snapshot to which to
add the ParmEd structure object. The box information of the initial
snapshot will be overwritten. (useful for rigid bodies)

Returns

hoomd_snapshot
[hoomd.Snapshot]

ReferenceValues
[namedtuple] Values used in scaling

19

Notes

This method does not create hoomd forcefield objects and the
snapshot returned does not store the forcefield parameters. See
mbuild.formats.hoomd_forcefield.create_hoomd_forcefield()

About units: This method operates on a Parmed.Structure object
where the units used differ from those used in mBuild and Foyer which may have
been used when creating the typed Parmed.Structure.

The default units used when writing out the HOOMD Snapshot are: Distance
(Angstrom) Mass (Dalton) Energy (kcal/mol)

If you wish to convert this unit system to another, you can use the reference pa-
rameters (ref_distance, ref_mass, ref_energy). The values used here should be ex-
pected to convert from the Parmed Structure units (above) to your desired units. The
Parmed.Structure values are divided by the reference values.

If you wish to used a reduced unit system, set auto_scale = True. When auto_scale is
True, the reference parameters won’t be used.

Examples

To convert the energy units from kcal/mol to kj/mol:
use ref_energy = 0.2390057 (kcal/kj)

To convert the distance units from Angstrom to nm:
use ref_distance = 10 (angstroms/nm)

To use a reduced unit system, where mass, sigma, and epsilon are scaled by the largest
value of each:

use auto_scale = True, ref_distance = ref_energy = ref_mass = 1

LAMMPS File Writers

Write Lammps data

LAMMPS data format.

mbuild.formats.lammpsdata.write_lammpsdata(structure, filename, atom_style='full',
unit_style='real', mins=None,
maxs=None, pair_coeff_label=None,
detect_forcefield_style=True,
nbfix_in_data_file=True,
use_urey_bradleys=False,
use_rb_torsions=True,
use_dihedrals=False,
sigma_conversion_factor=None,
epsilon_conversion_factor=None,
mass_conversion_factor=None,
charge_conversion_factor=True,
zero_dihedral_weighting_factor=False,
moleculeID_offset=1)

Output a LAMMPS data file.

20

Outputs a LAMMPS data file in the ‘full’ atom style format. Default units are ‘real’
units. See http://lammps.sandia.gov/doc/atom_style.html for more information on
atom styles.

Parameters

structure
[parmed.Structure] ParmEd structure object

filename
[str] Path of the output file

atom_style: str, optional, default=’full’
Defines the style of atoms to be saved in a LAMMPS data file.
The following atom styles are currently supported: ‘full’, ‘atomic’,
‘charge’, ‘molecular’ see http://lammps.sandia.gov/doc/atom_style.
html for more information on atom styles.

unit_style: str, optional, default=’real’
Defines to unit style to be save in a LAMMPS data file. Defaults to
‘real’ units. Current styles are supported: ‘real’, ‘lj’, ‘metal’ see https://
lammps.sandia.gov/doc/99/units.html for more information on unit
styles

mins
[list, optional, default=None] Minimum box dimension in x, y, z direc-
tions, nm

maxs
[list, optional, default=None] Maximum box dimension in x, y, z direc-
tions, nm

pair_coeff_label
[str, optional, default=None] Provide a custom label to the pair_coeffs
section in the lammps data file. A value of None means a suitable
default will be chosen.

detect_forcefield_style
[bool, optional, default=True] If True, format lammpsdata parameters
based on the contents of the parmed Structure

use_urey_bradleys
[bool, optional, default=False] If True, will treat angles as CHARMM-
style angles with urey bradley terms while looking for struc-
ture.urey_bradleys

use_rb_torsions
[bool, optional, default=True] If True, will treat dihedrals OPLS-style
torsions while looking for structure.rb_torsions

use_dihedrals
[bool, optional, default=False] If True, will treat dihedrals as
CHARMM-style dihedrals while looking for structure.dihedrals

zero_dihedral_weighting_factor
[bool, optional, default=False] If True, will set weighting parameter
to zero in CHARMM-style dihedrals. This should be True if the
CHARMM dihedral style is used in non-CHARMM forcefields.

sigma_conversion_factor
[float, optional, default=None] If unit_style is set to ‘lj’, then sigma
conversion factor is used to non-dimensionalize. Assume to be in

21

http://lammps.sandia.gov/doc/atom_style.html
http://lammps.sandia.gov/doc/atom_style.html
http://lammps.sandia.gov/doc/atom_style.html
https://lammps.sandia.gov/doc/99/units.html
https://lammps.sandia.gov/doc/99/units.html

units of nm. If None, will take the largest sigma value in the struc-
ture.atoms.sigma values.

epsilon_conversion_factor
[float, optional, default=None] If unit_style is set to ‘lj’, then epsilon
conversion factor is used to non-dimensionalize. Assume to be in units
of kCal/mol. If None, will take the largest epsilon value in the struc-
ture.atoms.epsilon values.

mass_conversion_factor
[float, optional, default=None] If unit_style is set to ‘lj’, then mass
conversion factor is used to non-dimensionalize. Assume to be in
units of amu. If None, will take the largest mass value in the struc-
ture.atoms.mass values.

charge_conversion_factor
[bool, optional, default=True] If unit_style is set to ‘lj’,
then charge conversion factor may or may not be used to
non-dimensionalize. Assume to be in elementary charge
units. If True, the charges are scaled by np.sqrt(4*np.
pi()*eps_0*sigma_conversion_factor*epsilon_conversion_factor).
If False, the charges are not scaled and the user must be wary to
choose the dielectric constant properly, which may be more convenient
to implement an implicit solvent.

moleculeID_offset
[int , optional, default=1] Since LAMMPS treats the MoleculeID as an
additional set of information to identify what molecule an atom belongs
to, this currently behaves as a residue id. This value needs to start at 1

to be considered a real molecule.

Notes

See http://lammps.sandia.gov/doc/2001/data_format.html for a full description of
the LAMMPS data format. Currently the following sections are supported (in addi-
tion to the header): Masses, Nonbond Coeffs, Bond Coeffs, Angle Coeffs, Dihedral Coeffs,
Atoms, Bonds, Angles, Dihedrals, Impropers OPLS and CHARMM forcefield styles are
supported, AMBER forcefield styles are NOT

Some of this function has beed adopted from mdtraj’s support of the LAMMPSTRJ
trajectory format. See https://github.com/mdtraj/mdtraj/blob/master/mdtraj/
formats/lammpstrj.py for details.

unique_types
[a sorted list of unique atomtypes for all atoms in the structure.]

Defined by:
atomtype : atom.type

unique_bond_types: an enumarated OrderedDict of unique bond types for all
bonds in the structure.

Defined by bond parameters and component atomtypes, in order: — k :
bond.type.k — req : bond.type.req — atomtypes : sorted((bond.atom1.type,
bond.atom2.type))

unique_angle_types: an enumerated OrderedDict of unique angle types for all
angles in the structure. Defined by angle parameters and component atomtypes,
in order: — k : angle.type.k — theteq : angle.type.theteq — vertex atomtype:
angle.atom2.type — atomtypes: sorted((bond.atom1.type, bond.atom3.type))

22

http://lammps.sandia.gov/doc/2001/data_format.html
https://github.com/mdtraj/mdtraj/blob/master/mdtraj/formats/lammpstrj.py
https://github.com/mdtraj/mdtraj/blob/master/mdtraj/formats/lammpstrj.py

unique_dihedral_types: an enumerated OrderedDict of unique dihedrals type
for all dihedrals in the structure. Defined by dihedral parameters and compo-
nent atomtypes, in order: — c0 : dihedral.type.c0 — c1 : dihedral.type.c1 — c2

: dihedral.type.c2 — c3 : dihedral.type.c3 — c4 : dihedral.type.c4 — c5 : dihe-
dral.type.c5 — scee : dihedral.type.scee — scnb : dihedral.type.scnb — atomtype
1 : dihedral.atom1.type — atomtype 2 : dihedral.atom2.type — atomtype 3 : di-
hedral.atom3.type — atomtype 4 : dihedral.atom4.type

1.5 Tutorials

Methane: Compounds and bonds

Note: mBuild expects all distance units to be in nanometers.

The primary building block in mBuild is a Compound. Anything you construct will inherit from this
class. Let’s start with some basic imports and initialization:

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

super(Methane, self).__init__()

Any Compound can contain other Compounds which can be added using its add() method. Compounds
at the bottom of such a hierarchy are referred to as Particles. Note however, that this is purely
semantic in mBuild to help clearly designate the bottom of a hierarchy.

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

super(Methane, self).__init__()
carbon = mb.Particle(name='C')
self.add(carbon, label='C[$]')

hydrogen = mb.Particle(name='H', pos=[0.11, 0, 0])
self.add(hydrogen, label='HC[$]')

By default a created Compound/Particle will be placed at 0, 0, 0 as indicated by its pos attribute.
The Particle objects contained in a Compound, the bottoms of the hierarchy, can be referenced via the
particles method which returns a generator of all Particle objects contained below the Compound
in the hierarchy.

Note: All positions in mBuild are stored in nanometers.

Any part added to a Compound can be given an optional, descriptive string label. If the label ends with
the characters [$], a list will be created in the labels. Any subsequent parts added to the Compound
with the same label prefix will be appended to the list. In the example above, we’ve labeled the
hydrogen as HC[$]. So this first part, with the label prefix HC, is now referenceable via self['HC'][0].
The next part added with the label HC[$] will be referenceable via self['HC'][1].

Now let’s use these styles of referencing to connect the carbon to the hydrogen. Note that for typical
use cases, you will almost never have to explicitly define a bond when using mBuild - this is just to
show you what’s going on under the hood:

23

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

super(Methane, self).__init__()
carbon = mb.Particle(name='C')
self.add(carbon, label='C[$]')

hydrogen = mb.Particle(name='H', pos=[0.11, 0, 0])
self.add(hydrogen, label='HC[$]')

self.add_bond((self[0], self['HC'][0]))

As you can see, the carbon is placed in the zero index of self. The hydrogen could be referenced via
self[1] but since we gave it a fancy label, it’s also referenceable via self['HC'][0].

Alright now that we’ve got the basics, let’s finish building our Methane and take a look at it:

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):

super(Methane, self).__init__()
carbon = mb.Particle(name='C')
self.add(carbon, label='C[$]')

hydrogen = mb.Particle(name='H', pos=[0.1, 0, -0.07])
self.add(hydrogen, label='HC[$]')

self.add_bond((self[0], self['HC'][0]))

self.add(mb.Particle(name='H', pos=[-0.1, 0, -0.07]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0, 0.1, 0.07]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0, -0.1, 0.07]), label='HC[$]')

self.add_bond((self[0], self['HC'][1]))
self.add_bond((self[0], self['HC'][2]))
self.add_bond((self[0], self['HC'][3]))

methane = Methane()
methane.visualize()

Save to .mol2
methane.save('methane.mol2',overwrite=True)

24

Ethane: Reading from files, Ports and coordinate transforms

Note: mBuild expects all distance units to be in nanometers.

In this example, we’ll cover reading molecular components from files, introduce the concept of Ports
and start using some coordinate transforms.

First, we need to import the mbuild package:

import mbuild as mb

As you probably noticed while creating your methane molecule in the last tutorial, manually adding
Particles and Bonds to a Compound is a bit cumbersome. The easiest way to create small, reusable
components, such as methyls, amines or monomers, is to hand draw them using software like Avo-
gadro59 and export them as either a .pdb or .mol2 file (the file should contain connectivity information).

Let’s start by reading a methyl group from a .pdb file:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
ch3.visualize()

Now let’s use our first coordinate transform to center the methyl at its carbon atom:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
ch3.translate(-ch3[0].pos) # Move carbon to origin.

Now we have a methyl group loaded up and centered. In order to connect Compounds in mBuild, we
make use of a special type of Compound: the Port. A Port is a Compound with two sets of four “ghost”
Particles that assist in bond creation. In addition, Ports have an anchor attribute which typically
points to a particle that the Port should be associated with. In our methyl group, the Port should be
anchored to the carbon atom so that we can now form bonds to this carbon:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
ch3.translate(-ch3[0].pos) # Move carbon to origin.

port = mb.Port(anchor=ch3[0])
ch3.add(port, label='up')

Place the port at approximately half a C-C bond length.
ch3['up'].translate([0, -0.07, 0])

By default, Ports are never output from the mBuild structure. However, it can be useful to look at a
molecule with the Ports to check your work as you go:

ch3.visualize(show_ports=True)

Now we wrap the methyl group into a python class, so that we can reuse it as a component to build
more complex molecules later.

59 https://avogadro.cc/

25

https://avogadro.cc/
https://avogadro.cc/

import mbuild as mb

class CH3(mb.Compound):
def __init__(self):

super(CH3, self).__init__()

mb.load('ch3.pdb', compound=self)
self.translate(-self[0].pos) # Move carbon to origin.

port = mb.Port(anchor=self[0])
self.add(port, label='up')
Place the port at approximately half a C-C bond length.
self['up'].translate([0, -0.07, 0])

When two Ports are connected, they are forced to overlap in space and their parent Compounds are
rotated and translated by the same amount.

Note: If we tried to connect two of our methyls right now using only one set of four ghost particles, not
only would the Ports overlap perfectly, but the carbons and hydrogens would also perfectly overlap -
the 4 ghost atoms in the Port are arranged identically with respect to the other atoms. For example, if
a Port and its direction is indicated by “<-”, forcing the port in <-CH3 to overlap with <-CH3 would
just look like <-CH3 (perfectly overlapping atoms).

To solve this problem, every port contains a second set of 4 ghost atoms pointing in the opposite
direction. When two Compounds are connected, the port that places the anchor atoms the farthest
away from each other is chosen automatically to prevent this overlap scenario.

When <->CH3 and <->CH3 are forced to overlap, the CH3<->CH3 is automatically chosen.

Now the fun part: stick ’em together to create an ethane:

ethane = mb.Compound()

ethane.add(CH3(), label="methyl_1")
ethane.add(CH3(), label="methyl_2")
mb.force_overlap(move_this=ethane['methyl_1'],

from_positions=ethane['methyl_1']['up'],
to_positions=ethane['methyl_2']['up'])

Above, the force_overlap() function takes a Compound and then rotates and translates it such that
two other Compounds overlap. Typically, as in this case, those two other Compounds are Ports - in our
case, methyl1['up'] and methyl2['up'].

ethane.visualize()

ethane.visualize(show_ports=True)

Similarly, if we want to make ethane a reusable component, we need to wrap it into a python class.

import mbuild as mb

class Ethane(mb.Compound):
def __init__(self):

super(Ethane, self).__init__()

self.add(CH3(), label="methyl_1")
self.add(CH3(), label="methyl_2")

(continues on next page)

26

(continued from previous page)

mb.force_overlap(move_this=self['methyl_1'],
from_positions=self['methyl_1']['up'],
to_positions=self['methyl_2']['up'])

ethane = Ethane()
ethane.visualize()

Save to .mol2
ethane.save('ethane.mol2', overwrite=True)

Monolayer: Complex hierarchies, patterns, tiling and writing to files

Note: mBuild expects all distance units to be in nanometers.

In this example, we’ll cover assembling more complex hierarchies of components using patterns, tiling
and how to output systems to files. To illustrate these concepts, let’s build an alkane monolayer on a
crystalline substrate.

First, let’s build our monomers and functionalized them with a silane group which we can then
attach to the substrate. The Alkane example uses the polymer tool to combine CH2 and CH3 repeat
units. You also have the option to cap the front and back of the chain or to leave a CH2 group with
a dangling port. The Silane compound is a Si(OH)2 group with two ports facing out from the
central Si. Lastly, we combine alkane with silane and add a label to AlkylSilane which points
to, silane['down']. This allows us to reference it later using AlkylSilane['down'] rather than
AlkylSilane['silane']['down'].

Note: In Compounds with multiple Ports, by convention, we try to label every Port successively as
‘up’, ‘down’, ‘left’, ‘right’, ‘front’, ‘back’ which should roughly correspond to their relative orientations.
This is a bit tricky to enforce because the system is so flexible so use your best judgement and try to
be consistent! The more components we collect in our library with the same labeling conventions, the
easier it becomes to build ever more complex structures.

import mbuild as mb

from mbuild.lib.recipes import Alkane
from mbuild.lib.moieties import Silane

class AlkylSilane(mb.Compound):
"""A silane functionalized alkane chain with one Port. """
def __init__(self, chain_length):

super(AlkylSilane, self).__init__()

alkane = Alkane(chain_length, cap_end=False)
self.add(alkane, 'alkane')
silane = Silane()
self.add(silane, 'silane')
mb.force_overlap(self['alkane'], self['alkane']['down'], self['silane'][

↪→'up'])

Hoist silane port to AlkylSilane level.
self.add(silane['down'], 'down', containment=False)

27

AlkylSilane(5).visualize()

Now let’s create a substrate to which we can later attach our monomers:

import mbuild as mb
from mbuild.lib.surfaces import Betacristobalite

surface = Betacristobalite()
tiled_surface = mb.lib.recipes.TiledCompound(surface, n_tiles=(2, 1, 1))

Here we’ve imported a beta-cristobalite surface from our component library. The TiledCompound tool
allows you replicate any Compound in the x-, y- and z-directions by any number of times - 2, 1 and 1

for our case.

Next, let’s create our monomer and a hydrogen atom that we’ll place on unoccupied surface sites:

from mbuild.lib.atoms import H
alkylsilane = AlkylSilane(chain_length=10)
hydrogen = H()

Then we need to tell mBuild how to arrange the chains on the surface. This is accomplished with
the “pattern” tools. Every pattern is just a collection of points. There are all kinds of patterns like
spherical, 2D, regular, irregular etc. When you use the apply_pattern command, you effectively
superimpose the pattern onto the host compound, mBuild figures out what the closest ports are to the
pattern points and then attaches copies of the guest onto the binding sites identified by the pattern:

pattern = mb.Grid2DPattern(8, 8) # Evenly spaced, 2D grid of points.

Attach chains to specified binding sites. Other sites get a hydrogen.
chains, hydrogens = pattern.apply_to_compound(host=tiled_surface,␣
↪→guest=alkylsilane, backfill=hydrogen)

Also note the backfill optional argument which allows you to place a different compound on any
unused ports. In this case we want to backfill with hydrogen atoms on every port without a chain.

monolayer = mb.Compound([tiled_surface, chains, hydrogens])
monolayer.visualize() # Warning: may be slow in IPython notebooks

Save as .mol2 file
monolayer.save('monolayer.mol2', overwrite=True)

lib.recipes.monolayer.py wraps many these functions into a simple, general class for generating
the monolayers, as shown below:

from mbuild.lib.recipes import Monolayer

monolayer = Monolayer(fractions=[1.0], chains=alkylsilane, backfill=hydrogen,
pattern=mb.Grid2DPattern(n=8, m=8),
surface=surface, tile_x=2, tile_y=1)

monolayer.visualize()

28

Point Particles: Basic system initialization

Note: mBuild expects all distance units to be in nanometers.

This tutorial focuses on the usage of basic system initialization operations, as applied to simple point
particle systems (i.e., generic Lennard-Jones particles rather than specific atoms).

The code below defines several point particles in a cubic arrangement. Note, the color and radius
associated with a Particle name can be set and passed to the visualize command. Colors are passed in
hex format (see http://www.color-hex.com/color/bfbfbf).

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_particle1 = mb.Particle(name='LJ', pos=[0, 0, 0])
self.add(lj_particle1)

lj_particle2 = mb.Particle(name='LJ', pos=[1, 0, 0])
self.add(lj_particle2)

lj_particle3 = mb.Particle(name='LJ', pos=[0, 1, 0])
self.add(lj_particle3)

lj_particle4 = mb.Particle(name='LJ', pos=[0, 0, 1])
self.add(lj_particle4)

lj_particle5 = mb.Particle(name='LJ', pos=[1, 0, 1])
self.add(lj_particle5)

lj_particle6 = mb.Particle(name='LJ', pos=[1, 1, 0])
self.add(lj_particle6)

lj_particle7 = mb.Particle(name='LJ', pos=[0, 1, 1])
self.add(lj_particle7)

lj_particle8 = mb.Particle(name='LJ', pos=[1, 1, 1])
self.add(lj_particle8)

monoLJ = MonoLJ()
monoLJ.visualize()

While this would work for defining a single molecule or very small system, this would not be efficient
for large systems. Instead, the clone and translate operator can be used to facilitate automation. Below,
we simply define a single prototype particle (lj_proto), which we then copy and translate about the
system.

Note, mBuild provides two different translate operations, “translate” and “translate_to”. “translate”
moves a particle by adding the vector the original position, whereas “translate_to” move a particle
to the specified location in space. Note, “translate_to” maintains the internal spatial relationships of
a collection of particles by first shifting the center of mass of the collection of particles to the origin,
then translating to the specified location. Since the lj_proto particle in this example starts at the origin,
these two commands produce identical behavior.

29

http://www.color-hex.com/color/bfbfbf

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

for i in range(0,2):
for j in range(0,2):

for k in range(0,2):
lj_particle = mb.clone(lj_proto)
pos = [i,j,k]
lj_particle.translate(pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

To simplify this process, mBuild provides several build-in patterning tools, where for example,
Grid3DPattern can be used to perform this same operation. Grid3DPattern generates a set of points,
from 0 to 1, which get stored in the variable “pattern”. We need only loop over the points in pattern,
cloning, translating, and adding to the system. Note, because Grid3DPattern defines points between 0

and 1, they must be scaled based on the desired system size, i.e., pattern.scale(2).

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern = mb.Grid3DPattern(2, 2, 2)
pattern.scale(2)

for pos in pattern:
lj_particle = mb.clone(lj_proto)
lj_particle.translate(pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

Larger systems can therefore be easily generated by toggling the values given to Grid3DPattern. Other
patterns can also be generated using the same basic code, such as a 2D grid pattern:

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern = mb.Grid2DPattern(5, 5)
pattern.scale(5)

(continues on next page)

30

(continued from previous page)

for pos in pattern:
lj_particle = mb.clone(lj_proto)
lj_particle.translate(pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

Points on a sphere can be generated using SpherePattern. Points on a disk using DisKPattern, etc.

Note to show both simultaneously, we shift the x-coordinate of Particles in the sphere by -1 (i.e.,
pos[0]-=1.0) and +1 for the disk (i.e, pos[0]+=1.0).

import mbuild as mb

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(200)
pattern_sphere.scale(0.5)

for pos in pattern_sphere:
lj_particle = mb.clone(lj_proto)
pos[0]-=1.0
lj_particle.translate(pos)
self.add(lj_particle)

pattern_disk = mb.DiskPattern(200)
pattern_disk.scale(0.5)
for pos in pattern_disk:

lj_particle = mb.clone(lj_proto)
pos[0]+=1.0
lj_particle.translate(pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

We can also take advantage of the hierachical nature of mBuild to accomplish the same task more
cleanly. Below we create a component that corresponds to the sphere (class SphereLJ), and one that
corresponds to the disk (class DiskLJ), and then instantiate and shift each of these individually in the
MonoLJ component.

import mbuild as mb

class SphereLJ(mb.Compound):
def __init__(self):

super(SphereLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(200)
(continues on next page)

31

(continued from previous page)

pattern_sphere.scale(0.5)

for pos in pattern_sphere:
lj_particle = mb.clone(lj_proto)
lj_particle.translate(pos)
self.add(lj_particle)

class DiskLJ(mb.Compound):
def __init__(self):

super(DiskLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_disk = mb.DiskPattern(200)
pattern_disk.scale(0.5)
for pos in pattern_disk:

lj_particle = mb.clone(lj_proto)
lj_particle.translate(pos)
self.add(lj_particle)

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()

sphere = SphereLJ();
pos=[-1, 0, 0]
sphere.translate(pos)
self.add(sphere)

disk = DiskLJ();
pos=[1, 0, 0]
disk.translate(pos)
self.add(disk)

monoLJ = MonoLJ()
monoLJ.visualize()

Again, since mBuild is hierarchical, the pattern functions can be used to generate large systems of any
arbitary component. For example, we can replicate the SphereLJ component on a regular array.

import mbuild as mb

class SphereLJ(mb.Compound):
def __init__(self):

super(SphereLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(13)
pattern_sphere.scale(0.1)

for pos in pattern_sphere:
lj_particle = mb.clone(lj_proto)

(continues on next page)

32

(continued from previous page)

lj_particle.translate(pos)
self.add(lj_particle)

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
sphere = SphereLJ();

pattern = mb.Grid3DPattern(3, 3, 3)
pattern.scale(2)

for pos in pattern:
lj_sphere = mb.clone(sphere)
lj_sphere.translate_to(pos)
#shift the particle so the center of mass
#of the system is at the origin
lj_sphere.translate([-5,-5,-5])

self.add(lj_sphere)

monoLJ = MonoLJ()
monoLJ.visualize()

Several functions exist for rotating compounds. For example, the spin command allows a compound
to be rotated, in place, about a specific axis (i.e., it considers the origin for the rotation to lie at the
compound’s center of mass).

import mbuild as mb
import random
from numpy import pi

class CubeLJ(mb.Compound):
def __init__(self):

super(CubeLJ, self).__init__()
lj_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern = mb.Grid3DPattern(2, 2, 2)
pattern.scale(0.2)

for pos in pattern:
lj_particle = mb.clone(lj_proto)
lj_particle.translate(pos)
self.add(lj_particle)

class MonoLJ(mb.Compound):
def __init__(self):

super(MonoLJ, self).__init__()
cube_proto = CubeLJ();

pattern = mb.Grid3DPattern(3, 3, 3)
pattern.scale(2)
rnd = random.Random()
rnd.seed(123)

(continues on next page)

33

(continued from previous page)

for pos in pattern:
lj_cube = mb.clone(cube_proto)
lj_cube.translate_to(pos)
#shift the particle so the center of mass
#of the system is at the origin
lj_cube.translate([-5,-5,-5])
lj_cube.spin(rnd.uniform(0, 2 * pi), [1, 0, 0])
lj_cube.spin(rnd.uniform(0, 2 * pi), [0, 1, 0])
lj_cube.spin(rnd.uniform(0, 2 * pi), [0, 0, 1])

self.add(lj_cube)

monoLJ = MonoLJ()
monoLJ.visualize()

Configurations can be dumped to file using the save command; this takes advantage of MDTraj and
supports a range of file formats (see http://MDTraj.org).

#save as xyz file
monoLJ.save('output.xyz')
#save as mol2
monoLJ.save('output.mol2')

Building a Simple Alkane

The purpose of this tutorial is to demonstrate the construction of an alkane polymer and provide
familiarity with many of the underlying functions in mBuild. Note that a robust polymer construction
recipe already exists in mBuild, which will also be demonstrated at the end of the tutorial.

Setting up the monomer

The first step is to construct the basic repeat unit for the alkane, i.e., a CH2 group, similar to the
construction of the CH3 monomer in the prior methane tutorial. Rather than importing the coordinates
from a pdb file, as in the previous example, we will instead explicitly define them in the class. Recall
that distance units are nm in mBuild.

import mbuild as mb

class CH2(mb.Compound):
def __init__(self):

super(CH2, self).__init__()
Add carbon
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]')

Add hydrogens
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')

Add bonds between the atoms
self.add_bond((self['C'][0], self['HC'][0]))
self.add_bond((self['C'][0], self['HC'][1]))

(continues on next page)

34

http://MDTraj.org

(continued from previous page)

Add ports anchored to the carbon
self.add(mb.Port(anchor=self[0]), label='up')
self.add(mb.Port(anchor=self[0]), label='down')

Move the ports approximately half a C-C bond length away from the␣
↪→carbon

self['up'].translate([0, -0.154/2, 0])
self['down'].translate([0, 0.154/2, 0])

monomer = CH2()
monomer.visualize(show_ports=True)

This configuration of the monomer is not a particularly realistic conformation. One could use this
monomer to construct a polymer and then apply an energy minimization scheme, or, as we will
demonstrate here, we can use mBuild’s rotation commands to provide a more realistic starting point.

Below, we use the same basic script, but now apply a rotation to the hydrogen atoms. Since the
hydrogens start 180° apart and we know they should be ~109.5° apart, each should be rotated half of
the difference closer to each other around the y-axis. Note that the rotation angle is given in radians.
Similarly, the ports should be rotated around the x-axis by the same amount so that atoms can be
added in a realistic orientation.

import numpy as np
import mbuild as mb

class CH2(mb.Compound):
def __init__(self):

super(CH2, self).__init__()
Add carbon
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]')

Add hydrogens
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')

Rotate the hydrogens
theta = 0.5 * (180 - 109.5) * np.pi / 180
#mb.rotate(self['HC'][0], theta, around=[0, 1, 0])
#mb.rotate(self['HC'][1], -theta, around=[0, 1, 0])
self['HC'][0].rotate(theta, around=[0, 1, 0])
self['HC'][1].rotate(-theta, around=[0, 1, 0])

Add bonds between the atoms
self.add_bond((self['C'][0], self['HC'][0]))
self.add_bond((self['C'][0], self['HC'][1]))

Add the ports and appropriately rotate them
self.add(mb.Port(anchor=self[0]), label='up')
self['up'].translate([0, -0.154/2, 0])
self['up'].rotate(theta, around=[1, 0, 0])

self.add(mb.Port(anchor=self[0]), label='down')
self['down'].translate([0, 0.154/2, 0])

(continues on next page)

35

(continued from previous page)

self['down'].rotate(-theta, around=[1, 0, 0])

monomer = CH2()
monomer.visualize(show_ports=True)

Defining the polymerization class

With a basic monomer construct, we can now construct a polymer by connecting the ports together.
Here, we first instantiate one instance of the CH2 class as 1ast_monomer, then use the clone function to
make a copy. The force_overlap() function is used to connect the 'up' port from current_monomer
to the 'down' port of last_mononer.

class AlkanePolymer(mb.Compound):
def __init__(self):

super(AlkanePolymer, self).__init__()
last_monomer = CH2()
self.add(last_monomer)
for i in range(3):

current_monomer = CH2()
mb.force_overlap(move_this=current_monomer,

from_positions=current_monomer['up'],
to_positions=last_monomer['down'])

self.add(current_monomer)
last_monomer = current_monomer

polymer = AlkanePolymer()
polymer.visualize(show_ports=True)

Visualization of this structure demonstrates a problem; the polymer curls up on itself. This is a result
of the fact that ports not only define the location in space, but also an orientation. This can be trivially
fixed, by rotating the down port 180° around the y-axis.

We can also add a variable chain_length both to the for loop and init that will allow the length of
the polymer to be adjusted when the class is instantiated.

import numpy as np
import mbuild as mb

class CH2(mb.Compound):
def __init__(self):

super(CH2, self).__init__()
Add carbons and hydrogens

self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]')
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')

rotate hydrogens
theta = 0.5 * (180 - 109.5) * np.pi / 180
self['HC'][0].rotate(theta, around=[0, 1, 0])
self['HC'][1].rotate(-theta, around=[0, 1, 0])

Add bonds between the atoms
self.add_bond((self['C'][0], self['HC'][0]))

(continues on next page)

36

(continued from previous page)

self.add_bond((self['C'][0], self['HC'][1]))

Add ports
self.add(mb.Port(anchor=self[0]), label='up')
self['up'].translate([0, -0.154/2, 0])
self['up'].rotate(theta, around=[1, 0, 0])

self.add(mb.Port(anchor=self[0]), label='down')
self['down'].translate([0, 0.154/2, 0])
self['down'].rotate(np.pi, [0, 1, 0])
self['down'].rotate(-theta, around=[1, 0, 0])

class AlkanePolymer(mb.Compound):
def __init__(self, chain_length=1):

super(AlkanePolymer, self).__init__()
last_monomer = CH2()
self.add(last_monomer)
for i in range (chain_length-1):

current_monomer = CH2()

mb.force_overlap(move_this=current_monomer,
from_positions=current_monomer['up'],
to_positions=last_monomer['down'])

self.add(current_monomer)
last_monomer=current_monomer

polymer = AlkanePolymer(chain_length=10)
polymer.visualize(show_ports=True)

Using mBuild’s Polymer Class

mBuild provides a prebuilt class to perform this basic functionality. Since it is designed to be more
general, it takes as an argument not just the replicates (n), sequence (‘A’ for a single monomer or ‘AB’
for two different monomers). Then, it binds them together by removing atom/bead via specifying its
index number (indices). A graphical description of the polymer builder creating ports, then bonding
them together is provided below.

Note: The port locations may be critical to ensure the molecule is not overlapping when it is built.

Building a Simple Hexane

A simple hexane molecule is built using mBuild’s packaged polymer builder. This is done by loading
a methane molecule via a SMILES string. The indices are explicitly selected, so the molecule builds
out in the proper directions and does not overlap.

import mbuild as mb
from mbuild.lib.recipes.polymer import Polymer

comp = mb.load('C', smiles=True) # mBuild compound of the monomer unit
(continues on next page)

37

Fig. 3: Polymer builder class example. This shows how to define the atoms, which are replaced with
ports. The ports are then bonded together between the monomers. Additionally, these ports can be
utilized for adding different end groups moieties to the polymer.

(continued from previous page)

chain = Polymer()

chain.add_monomer(compound=comp,
indices=[1, -2],
separation=.15,
replace=True)

chain.build(n=6, sequence='A')

Using Multiple Monomers and Capping the Ends of a Polymer

This example uses methyl ether and methane monomers to build a polymer, capping it with fluo-
rinated and alcohol end groups. The monomers are combined together in the ‘AB’ sequence two
times (n=2), which means the polymer will contain 2 of each monomer (ABAB). The end groups are
added via the add_end_groups attribute, specifying the atom to use (index), the distance of the bond
(separation), the location of each end group (label), and if the tail end group is duplicated to the
head of the polymer (duplicate). The indices are explicitly selected, so the molecule builds out in the
proper directions and does not overlap.

from mbuild.lib.recipes.polymer import Polymer
import mbuild as mb

comp_1 = mb.load('C', smiles=True)
comp_2 = mb.load('COC', smiles=True)
chain = Polymer()

chain.add_monomer(compound=comp_1,
indices=[1, -1],
separation=.15,
replace=True)

(continues on next page)

38

(continued from previous page)

chain.add_monomer(compound=comp_2,
indices=[3, -1],
separation=.15,
replace=True)

chain.add_end_groups(mb.load('O',smiles=True), # Capping off this polymer with an␣
↪→Alcohol

index=1,
separation=0.15, label="head", duplicate=False)

chain.add_end_groups(mb.load('F',smiles=True), # Capping off this polymer with a␣
↪→Fluorine

index=1,
separation=0.18, label="tail", duplicate=False)

chain.build(n=2, sequence='AB')
chain.visualize(show_ports=True)

Building a System of Alkanes

A system of alkanes can be constructed by simply cloning the polymer constructed above and trans-
lating and/or rotating the alkanes in space. mBuild provides many routines that can be used to create
different patterns, to which the polymers can be shifted.

comp = mb.load('C', smiles=True) # mBuild compound of the monomer unit
polymer = Polymer()

polymer.add_monomer(compound=comp,
indices=[1, -2],
separation=.15,
replace=True)

polymer.build(n=10, sequence='A')

the pattern we generate puts points in the xy-plane, so we'll rotate the␣
↪→polymer

so that it is oriented normal to the xy-plane
polymer.rotate(np.pi/2, [1, 0, 0])

define a compound to hold all the polymers
system = mb.Compound()

create a pattern of points to fill a disk
patterns are generated between 0 and 1,
and thus need to be scaled to provide appropriate spacing
pattern_disk = mb.DiskPattern(50)
pattern_disk.scale(5)

now clone the polymer and move it to the points in the pattern
(continues on next page)

39

(continued from previous page)

for pos in pattern_disk:
current_polymer = mb.clone(polymer)
current_polymer.translate(pos)
system.add(current_polymer)

system.visualize()

Other patterns can be used, e.g., the Grid3DPattern. We can also use the rotation commands to
randomize the orientation.

import random

comp = mb.load('C', smiles=True)
polymer = Polymer()

polymer.add_monomer(compound=comp,
indices=[1, -2],
separation=.15,
replace=True)

polymer.build(n=10, sequence='A')

system = mb.Compound()
polymer.rotate(np.pi/2, [1, 0, 0])

pattern_disk = mb.Grid3DPattern(5, 5, 5)
pattern_disk.scale(8.0)

for pos in pattern_disk:
current_polymer = mb.clone(polymer)
for around in [(1, 0, 0), (0, 1, 0), (0, 0, 1)]: # rotate around x, y, and z

current_polymer.rotate(random.uniform(0, np.pi), around)
current_polymer.translate(pos)
system.add(current_polymer)

system.visualize()

mBuild also provides an interface to PACKMOL, allowing the creation of a randomized configuration.

comp = mb.load('C', smiles=True) # mBuild compound of the monomer unit
polymer = Polymer()

polymer.add_monomer(compound=comp,
indices=[1, -2],
separation=.15,
replace=True)

polymer.build(n=5, sequence='A')

system = mb.fill_box(polymer, n_compounds=100, overlap=1.5, box=[10,10,10])
system.visualize()

40

Variations

Rather than a linear chain, the Polymer class we wrote can be easily changed such that small perturba-
tions are given to each port. To avoid accumulation of deviations from the equilibrium angle, we will
clone an unperturbed monomer each time (i.e., monomer_proto) before applying a random variation.

We also define a variable delta, which will control the maximum amount of perturbation. Note that
large values of delta may result in the chain overlapping itself, as mBuild does not currently include
routines to exclude such overlaps.

import mbuild as mb

import random

class AlkanePolymer(mb.Compound):
def __init__(self, chain_length=1, delta=0):

super(AlkanePolymer, self).__init__()
monomer_proto = CH2()
last_monomer = CH2()
last_monomer['down'].rotate(random.uniform(-delta,delta), [1, 0, 0])
last_monomer['down'].rotate(random.uniform(-delta,delta), [0, 1, 0])
self.add(last_monomer)
for i in range(chain_length-1):

current_monomer = mb.clone(monomer_proto)
current_monomer['down'].rotate(random.uniform(-delta,delta), [1, 0,␣

↪→0])
current_monomer['down'].rotate(random.uniform(-delta,delta), [0, 1,␣

↪→0])
mb.force_overlap(move_this=current_monomer,

from_positions=current_monomer['up'],
to_positions=last_monomer['down'])

self.add(current_monomer)
last_monomer=current_monomer

polymer = AlkanePolymer(chain_length = 200, delta=0.4)
polymer.visualize()

Lattice Tutorial

The following notebook provides a thorough walkthrough to using the Lattice class to build up
crystal systems.

Lattice Functionality

• Variable-dimension crystal structures

– Lattice supports the dimensionality of mBuild, which means that the systems can be in 1D,
2D, or 3D. Replace the necessary vector components with 0 to emulate the dimensionality
of interest.

• Multicomponent crystals

– Lattice can support an indefinite amount of lattice points in its data structure.

– The repeat cell can be as large as the user defines useful.

– The components that occupy the lattice points are mbuild.Compound objects.

41

* This allows the user to build any system since compounds are only a representation of
matter in this design.

* Molecular crystals, coarse grained, atomic, even alloy crystal structures are all sup-
ported

• Triclinic Lattices

– With full support for triclinic lattices, any crystal structure can technically be developed.

– Either the user can provide the lattice parameters, or if they know the vectors that span the
unit cell, that can also be provided.

• Generation of lattice structure from crystallographic index file (CIF)60 formats

– Please also see the Load files section for other ways to load files.

• IN PROGRESS Template recipes to generate common crystal structures (FCC, BCC, HEX, etc)

– This is currently being developed and will be released relatively shortly

– To generate these structures currently, the user needs to know the lattice parameters or
lattice vectors that define these units.

Lattice Data Structure Introduction

Below we will explore the relevant data structures that are attributes of the Lattice class. This
information will be essential to build desired crystal structures.

To begin, we will call the python help() method to observe the parameters and attributes of the
Lattice class.

import mbuild
help(mbuild.Lattice)

As we can see, there are quite a few attributes and parameters that make up this class. There are also
a lot of inline examples as well. If you ever get stuck, remember to use the python built-in help()
method!

• Lattice.lattice_spacing

This data structure is a (3,) array that details the lengths of the repeat cell for the crystal. You
can either use a numpy array object, or simply pass in a list and Lattice will handle the rest.
Remember that mBuild’s units of length are in nanometers [nm]. You must pass in all three
lengths, even if they are all equivalent. These are the lattice parameters a, b, c when viewing
crystallographic information.

For Example:

lattice_spacing = [0.5, 0.5, 0.5]

• Lattice.lattice_vectors

lattice_vectors is a 3x3 array that defines the vectors that encapsulate the repeat cell. This is
an optional value that the user can pass in to define the cell. Either this must be passed in, or
the 3 Bravais angles of the cell from the lattice parameters must be provided. If neither is passed
in, the default value are the vectors that encase a cubic lattice.

60 https://www.iucr.org/resources/cif/documentation

42

https://www.iucr.org/resources/cif/documentation

Note: Most users will not have to use these to build their lattice structure of interest. It will
usually be easier for the users to provide the 3 Bravais angles instead. If the user then wants the
vectors, the Lattice object will calculate them for the user.

For example: Cubic Cell

lattice_vectors = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

• Lattice.angles

angles is a (3,) array that defines the three Bravais angles of the lattice. Commonly referred to
as α, β, γ in the definition of the lattice parameters.

For example: Cubic Cell

angles = [90, 90, 90]

• Lattice.lattice_points

lattice_points can be the most common source of confusion when creating a crystal structure.
In crystallographic terms, this is the minimum basis set of points in space that define where the
points in the lattice exist. This requires that the user does not over define the system.

Note: MIT’s OpenCourseWare has an excellent PDF for more information here61

The other tricky issue that can come up is the data structure itself. lattice_points is a dictio-
nary where the dict.key items are the string id’s for each basis point. The dict.values items
are a nested list of fractional coordinates of the unique lattice points in the cell. If you have the
same Compound at multiple lattice_points, it is easier to put all those coordinates in a nested list
under the same key value. Two examples will be given below, both FCC unit cells, one with all
the same id, and one with unique ids for each lattice_point.

For Example: FCC All Unique

lattice_points = {'A' : [[0, 0, 0]],
'B' : [[0.5, 0.5, 0]],
'C' : [[0.5, 0, 0.5]],
'D' : [[0, 0.5, 0.5]]
}

For Example: FCC All Same

lattice_points = {'A' : [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.
↪→5]] }

61 https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-108-structure-of-earth-materials-fall-2004/
lecture-notes/lec7.pdf

43

https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-108-structure-of-earth-materials-fall-2004/lecture-notes/lec7.pdf

Lattice Public Methods

The Lattice class also contains methods that are responsible for applying Compounds to the lattice
points, with user defined cell replications in the x, y, and z directions.

• Lattice.populate(compound_dict=None, x=1, y=1, z=1)

This method uses the Lattice object to place Compounds at the specified lattice_points.
There are 4 optional inputs for this class.

– compound_dict inputs another dictionary that defines a relationship between the
lattice_points and the Compounds that the user wants to populate the lattice with. The
dict.keys of this dictionary must be the same as the keys in the lattice_points dictio-
nary. However, for the dict.items in this case, the Compound that the user wants to place
at that lattice point(s) will be used. An example will use the FCC examples from above.
They have been copied below:

For Example: FCC All Unique

lattice_points = {'A' : [[0, 0, 0]],
'B' : [[0.5, 0.5, 0]],
'C' : [[0.5, 0, 0.5]],
'D' : [[0, 0.5, 0.5]]
}

compound dictionary
a = mbuild.Compound(name='A')
b = mbuild.Compound(name='B')
c = mbuild.Compound(name='C')
d = mbuild.Compound(name='D')
compound_dict = {'A' : a, 'B' : b, 'C' : c, 'D' : d}

For Example: FCC All Same

lattice_points = {'A' : [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5],␣
↪→[0, 0.5, 0.5]] }

compound dictionary
a = mbuild.Compound(name='A')
compound_dict = {'A' : a}

44

Example Lattice Systems

Below contains some examples of homogeneous and heterogeneous 2D and 3D lattice structures using
the Lattice class.

Simple Cubic (SC)

• Polonium

import mbuild as mb
import numpy as np

define all necessary lattice parameters
spacings = [0.3359, 0.3359, 0.3359]
angles = [90, 90, 90]
points = [[0, 0, 0]]

define lattice object
sc_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={
↪→'Po' : points})

define Polonium Compound
po = mb.Compound(name='Po')

populate lattice with compounds
po_lattice = sc_lattice.populate(compound_dict={'Po' : po}, x=2, y=2, z=2)

visualize
po_lattice.visualize()

Fig. 4: Polonium simple cubic (SC) structure

45

Body-centered Cubic (BCC)

• CsCl

import mbuild as mb
import numpy as np

define all necessary lattice parameters
spacings = [0.4123, 0.4123, 0.4123]
angles = [90, 90, 90]
point1 = [[0, 0, 0]]
point2 = [[0.5, 0.5, 0.5]]

define lattice object
bcc_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={
↪→'A' : point1, 'B' : point2})

define Compounds
cl = mb.Compound(name='Cl')
cs = mb.Compound(name='Cs')

populate lattice with compounds
cscl_lattice = bcc_lattice.populate(compound_dict={'A' : cl, 'B' : cs}, x=2, y=2,␣
↪→z=2)

visualize
cscl_lattice.visualize()

Fig. 5: CsCl body-centered cubic (BCC) structure

Face-centered Cubic (FCC)

• Cu

import mbuild as mb
import numpy as np

define all necessary lattice parameters
spacings = [0.36149, 0.36149, 0.36149]
angles = [90, 90, 90]
points = [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]]

(continues on next page)

46

(continued from previous page)

define lattice object
fcc_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_points={
↪→'A' : points})

define Compound
cu = mb.Compound(name='Cu')

populate lattice with compounds
cu_lattice = fcc_lattice.populate(compound_dict={'A' : cu}, x=2, y=2, z=2)

visualize
cu_lattice.visualize()

Fig. 6: Cu face-centered cubic (FCC) structure

Diamond (Cubic)

• Si

import mbuild as mb
import numpy as np

define all necessary lattice parameters
spacings = [0.54309, 0.54309, 0.54309]
angles = [90, 90, 90]
points = [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5],

[0.25, 0.25, 0.75], [0.25, 0.75, 0.25], [0.75, 0.25, 0.25], [0.75, 0.75,
↪→ 0.75]]

define lattice object
diamond_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_
↪→points={'A' : points})

define Compound
si = mb.Compound(name='Si')

populate lattice with compounds
(continues on next page)

47

(continued from previous page)

si_lattice = diamond_lattice.populate(compound_dict={'A' : si}, x=2, y=2, z=2)

visualize
si_lattice.visualize()

Fig. 7: Si diamond (Cubic) structure

Graphene (2D)

• C

import mbuild as mb
import numpy as np

define all necessary lattice parameters
spacings = [0.246, 0.246, 0.335]
angles = [90, 90, 120]
points = [[0, 0, 0], [1/3, 2/3, 0]]

define lattice object
graphene_lattice = mb.Lattice(lattice_spacing=spacings, angles=angles, lattice_
↪→points={'A' : points})

define Compound
c = mb.Compound(name='C')

populate lattice with compounds
graphene = graphene_lattice.populate(compound_dict={'A' : c}, x=5, y=5, z=1)

visualize
graphene.visualize()

48

Fig. 8: Graphene (2D) structure

1.6 Recipe Development

There may be cases where your Compounds and/or building scripts can be generalized to support a
broad range of systems. Such objects would be a valuable resource for many researchers, and might
justify development of a Python package that could be distributed to the community.

mBuild has been developed with this in mind, in the form of a plug-in system. Detailed below are the
specifications of this system, how to convert an existing Python project into an mBuild-discoverable
plug-in, and an example.

Entry Points

The basis of the plug-in system in mBuild is the setuptools.entry_points package62. This allows other
packages to register themselves with the entry_point group we defined in mBuild, so they are ac-
cessible through the mbuild.recipes location. Imagine you have a class named my_foo that inherits
from mb.Compound. It is currently inside of a project my_project and is accessed via a direct import,
i.e. from my_project import my_foo. You can register this class as an entry point associated with
mbuild.recipes. It will then be accessible from inside mBuild as a plug-in via mbuild.recipes.
my_foo and a direct import will be unncessary. The call import mbuild discovers all plug-ins that fit
the entry_point group specification and makes them available under mbuild.recipes.

Registering a Recipe

Here we consider the case that a user already has a Python project set up with a structure similar to
the layout below.

This project can be found here63.

mbuild_fcc
LICENSE
README.md
mbuild_fcc

mbuild_fcc.py
tests

__init__.py
test_fcc.py

setup.py

62 https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata
63 https://github.com/justinGilmer/mbuild-fcc

49

https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata
https://github.com/justinGilmer/mbuild-fcc

The two important files for the user to convert their mBuild plug-in to a discoverable plug-in are
setup.py and mbuild_fcc.py.

To begin, lets first inspect the mbuild_fcc.py file, a shortened snippet is below.

import mbuild

class FCC(mbuild.Compound):
"""Create a mBuild Compound with a repeating unit of the FCC unit cell.

... (shortened for viewability)

"""

def __init__(self, lattice_spacing=None, compound_to_add=None, x=1, y=1, z=1):
super(FCC, self).__init__()

... (shortened for viewability)

if __name__ == "__main__":
au_fcc_lattice = FCC(lattice_spacing=0.40782,

compound_to_add=mbuild.Compound(name="Au"),
x=5, y=5, z=1)

print(au_fcc_lattice)

There are two notable lines in this file that we need to focus on when developing this as a plug-in for
mBuild.

The first is the import statement import mbuild. We must make sure that mbuild is installed since we
are inheriting from mbuild.Compound. When you decide to distribute your plug-in, the dependencies
must be listed.

The second is to select the name of the plug-in itself. It is considered good practice to name it the
name of your class. In this case, we will name the plug-in FCC.

The last step is to edit the setup.py file such that the plug-in can be registered under the entry_point
group mbuild.plugins.

from setuptools import setup

setup(
...
entry_points={ "mbuild.plugins":["FCC = mbuild_fcc.mbuild_fcc:FCC"]},
...

)

The important section is the entry_points argument. Here we define the entry_point group we want
to register with: "mbuild.plugins". Finally, we tell Python what name to use when accessing this
plug-in. Earlier, we decided to call it FCC. This is denoted here by the name before the assignment
operator FCC =. Next, we pass the location of the file with our plug-in: mbuild_fcc.mbuild_fcc as
if we were located at the setup.py file. Then, we provide the name of the class within that Python file
we want to make discoverable :FCC.

Since the setup.py file is located in the top folder of the python project, the first mbuild_fcc is the
name of the folder, and the second is the name of the python file. The colon (:) is used when accessing
the class that is in the python file itself.

50

Putting it all together

Finally, we have FCC = mbuild_fcc.mbuild_fcc:FCC.

To test this feature, you should clone the mbuild-fcc project listed above.

git clone https://github.com/justinGilmer/mbuild-fcc

Make sure you have mBuild installed, then run the command below after changing into the
mbuild-fcc directory.

cd mbuild-fcc

pip install -e .

Note that this command will install this example from source in an editable format.

Trying it Out

To test that you set up your plug-in correctly, try importing mBuild:

import mbuild

If you do not receive error messages, your plug-in should be discoverable!

help(mbuild.recipes.FCC) `

1.7 Data Structures

The primary building blocks in an mBuild hierarchy inherit from the mbuild.Compound class.
Compounds maintain an ordered set of children which are other Compounds. In addition, an in-
dependent, ordered dictionary of labels is maintained through which users can reference any other
Compound in the hierarchy via descriptive strings. Every Compound knows its parent Compound, one
step up in the hierarchy, and knows which Compounds reference it in their labels. mbuild.Port
is a special type of Compound which are used internally to connect different Compounds using the
equivalence transformations described below.

Compounds at the bottom of an mBuild hierarchy, the leaves of the tree, are referred to as Particles
and can be instantiated as foo = mbuild.Particle(name='bar'). Note however, that this merely
serves to illustrate that this Compound is at the bottom of the hierarchy; Particle is simply an alias
for Compound which can be used to clarify the intended role of an object you are creating. The method
mbuild.Compound.particles() traverses the hierarchy to the bottom and yields those Compounds.
mbuild.Compound.root() returns the compound at the top of the hierarchy.

Compound

class mbuild.Compound(subcompounds=None, name=None, pos=None, mass=None, charge=None,
periodicity=None, box=None, element=None, port_particle=False)

A building block in the mBuild hierarchy.

Compound is the superclass of all composite building blocks in the mBuild hierarchy. That is, all
composite building blocks must inherit from compound, either directly or indirectly. The design
of Compound follows the Composite design pattern:

@book{DesignPatterns,
author = "Gamma, Erich and Helm, Richard and Johnson, Ralph and
Vlissides, John M.",
title = "Design Patterns",

(continues on next page)

51

(continued from previous page)

subtitle = "Elements of Reusable Object-Oriented Software",
year = "1995",
publisher = "Addison-Wesley",
note = "p. 395",
ISBN = "0-201-63361-2",

}

with Compound being the composite, and Particle playing the role of the primitive (leaf) part,
where Particle is in fact simply an alias to the Compound class.

Compound maintains a list of children (other Compounds contained within), and provides a
means to tag the children with labels, so that the compounds can be easily looked up later.
Labels may also point to objects outside the Compound’s containment hierarchy. Compound
has built-in support for copying and deepcopying Compound hierarchies, enumerating particles
or bonds in the hierarchy, proximity based searches, visualization, I/O operations, and a number
of other convenience methods.

Parameters

subcompounds
[mb.Compound or list of mb.Compound, optional, default=None] One or more
compounds to be added to self.

name
[str, optional, default=self.__class__.__name__] The type of Compound.

pos
[np.ndarray, shape=(3,), dtype=float, optional, default=[0, 0, 0]] The position
of the Compound in Cartestian space

mass
[float, optional, default=None] The mass of the compound. If none is set, then
will try to infer the mass from a compound’s element attribute. If neither mass
or element are specified, then the mass will be None.

charge
[float, optional, default=0.0] Currently not used. Likely removed in next re-
lease.

periodicity
[tuple of bools, length=3, optional, default=None] Whether the Compound is
periodic in the x, y, and z directions. If None is provided, the periodicity is set
to (False, False, False) which is non-periodic in all directions.

port_particle
[bool, optional, default=False] Whether or not this Compound is part of a Port

box
[mb.Box, optional] The simulation box containing the compound. Also ac-
counts for the periodicity. Defaults to None which is treated as non-periodic.

element: str, optional, default=None
The one or two character element symbol

Attributes

bond_graph
[mb.BondGraph] Graph-like object that stores bond information for this Com-
pound

52

children
[list] Contains all children (other Compounds).

labels
[OrderedDict] Labels to Compound/Atom mappings. These do not necessarily
need not be in self.children.

parent
[mb.Compound] The parent Compound that contains this part. Can be None
if this compound is the root of the containment hierarchy.

referrers
[set] Other compounds that reference this part with labels.

rigid_id
[int, default=None] Get the rigid_id of the Compound.

boundingbox
[mb.Box] The bounds (xmin, xmax, ymin, ymax, zmin, zmax) of particles in
Compound

center
Get the cartesian center of the Compound based on its Particles.

contains_rigid
Return True if the Compound contains rigid bodies.

mass
Return the total mass of a compound.

max_rigid_id
Return the maximum rigid body ID contained in the Compound.

n_particles
Return the number of Particles in the Compound.

n_bonds
Return the total number of bonds in the Compound.

root
Get the Compound at the top of self’s hierarchy.

xyz
Return all particle coordinates in this compound.

xyz_with_ports
Return all particle coordinates in this compound including ports.

add(new_child, label=None, containment=True, replace=False, inherit_periodicity=None,
inherit_box=False, reset_rigid_ids=True, check_box_size=True)
Add a part to the Compound.

Note:
This does not necessarily add the part to self.children but may instead be used to add
a reference to the part to self.labels. See ‘containment’ argument.

Parameters

new_child
[mb.Compound or list-like of mb.Compound] The object(s) to be added to
this Compound.

label
[str, or list-like of str, optional, default None] A descriptive string for the part;
if a list, must be the same length/shape as new_child.

53

containment
[bool, optional, default=True] Add the part to self.children.

replace
[bool, optional, default=True] Replace the label if it already exists.

inherit_periodicity
[bool, optional, default=True] Replace the periodicity of self with the period-
icity of the Compound being added

inherit_box: bool, optional, default=False
Replace the box of self with the box of the Compound being added

reset_rigid_ids
[bool, optional, default=True] If the Compound to be added contains rigid
bodies, reset the rigid_ids such that values remain distinct from rigid_ids
already present in self. Can be set to False if attempting to add Compounds
to an existing rigid body.

check_box_size
[bool, optional, default=True] Checks and warns if compound box is smaller
than its bounding box after adding new_child.

add_bond(particle_pair, bond_order=None)
Add a bond between two Particles.

Parameters

particle_pair
[indexable object, length=2, dtype=mb.Compound] The pair of Particles to
add a bond between

bond_order
[float, optional, default=None] Bond order of the bond. Available options
include “default”, “single”, “double”, “triple”, “aromatic” or “unspecified”

all_ports()
Return all Ports referenced by this Compound and its successors.

Returns

list of mb.Compound
A list of all Ports referenced by this Compound and its successors

ancestors()
Generate all ancestors of the Compound recursively.

Yields

mb.Compound
The next Compound above self in the hierarchy

available_ports()
Return all unoccupied Ports referenced by this Compound.

Returns

list of mb.Compound
A list of all unoccupied ports referenced by the Compound

bonds(return_bond_order=False)
Return all bonds in the Compound and sub-Compounds.

Parameters

54

return_bond_order
[bool, optional, default=False] Return the bond order of the bond as the 3rd
argument in the tuple. bond order is returned as a dictionary with ‘bo’ as the
key. If bond order is not set, the value will be set to ‘default’.

Yields

tuple of mb.Compound
The next bond in the Compound

See also:

bond_graph.edges_iter
Iterates over all edges in a BondGraph

Compound.n_bonds
Returns the total number of bonds in the Compound and sub-Compounds

property box
Get the box of the Compound.

Ports cannot have a box.

property center
Get the cartesian center of the Compound based on its Particles.

Returns

np.ndarray, shape=(3,), dtype=float
The cartesian center of the Compound based on its Particles

property charge
Return the total charge of a compound.

If the compound contains children compouds, the total charge of all children compounds is
returned.

If the charge of a particle has not been explicitly set then the particle’s charge is None, and
are not used when calculating the total charge.

condense(inplace=True)
Condense the hierarchical structure of the Compound to the level of molecules.

Modify the mBuild Compound to become a Compound with 3 distinct levels in the hierar-
chy. The top level container (self), contains molecules (i.e., connected Compounds) and the
third level represents Particles (i.e., Compounds with no children). If the system contains
a Particle(s) without any connections to other Compounds, it will appear in the 2nd level
(with the top level self as a parent).

property contains_rigid
Return True if the Compound contains rigid bodies.

If the Compound contains any particle with a rigid_id != None then contains_rigid will
return True. If the Compound has no children (i.e. the Compound resides at the bottom of
the containment hierarchy) then contains_rigid will return False.

Returns

bool,
True if the Compound contains any particle with a rigid_id != None

55

Notes

The private variable ‘_check_if_contains_rigid_bodies’ is used to help cache the status of
‘contains_rigid’. If ‘_check_if_contains_rigid_bodies’ is False, then the rigid body contain-
ment of the Compound has not changed, and the particle tree is not traversed, boosting
performance.

direct_bonds()
Return a list of particles that this particle bonds to.

Returns

List of mb.Compound

See also:

bond_graph.edges_iter
Iterations over all edges in a BondGraph

Compound.n_direct_bonds
Returns the number of bonds a particle contains

property element
Get the element of the Compound.

energy_minimize(forcefield='UFF', steps=1000, shift_com=True, anchor=None, **kwargs)
Perform an energy minimization on a Compound.

Default behavior utilizes Open Babel64 to perform an energy minimization/geometry opti-
mization on a Compound by applying a generic force field

Can also utilize OpenMM65 to energy minimize after atomtyping a Compound using
Foyer66 to apply a forcefield XML file that contains valid SMARTS strings.

This function is primarily intended to be used on smaller components, with sizes on the
order of 10’s to 100’s of particles, as the energy minimization scales poorly with the number
of particles.

Parameters

steps
[int, optional, default=1000] The number of optimization iterations

forcefield
[str, optional, default=’UFF’] The generic force field to apply to the Com-
pound for minimization. Valid options are ‘MMFF94’, ‘MMFF94s’, ‘’UFF’,
‘GAFF’, ‘Ghemical’. Please refer to the Open Babel documentation67 when
considering your choice of force field. Utilizing OpenMM for energy mini-
mization requires a forcefield XML file with valid SMARTS strings. Please
refer to OpenMM docs68 for more information.

shift_com
[bool, optional, default=True] If True, the energy-minimized Compound is
translated such that the center-of-mass is unchanged relative to the initial
configuration.

anchor
[Compound, optional, default=None] Translates the energy-minimized Com-
pound such that the position of the anchor Compound is unchanged relative
to the initial configuration.

Other Parameters

56

http://openbabel.org/docs/dev/
http://openmm.org/
https://github.com/mosdef-hub/foyer
http://open-babel.readthedocs.io/en/latest/Forcefields/Overview.html
http://docs.openmm.org/7.0.0/userguide/application.html#creating-force-fields

algorithm
[str, optional, default=’cg’] The energy minimization algorithm. Valid op-
tions are ‘steep’, ‘cg’, and ‘md’, corresponding to steepest descent, conju-
gate gradient, and equilibrium molecular dynamics respectively. For _en-
ergy_minimize_openbabel

fixed_compounds
[Compound, optional, default=None] An individual Compound or list of
Compounds that will have their position fixed during energy minimization.
Note, positions are fixed using a restraining potential and thus may change
slightly. Position fixing will apply to all Particles (i.e., atoms) that exist in the
Compound and to particles in any subsequent sub-Compounds. By default
x,y, and z position is fixed. This can be toggled by instead passing a list
containing the Compound and an list or tuple of bool values corresponding
to x,y and z; e.g., [Compound, (True, True, False)] will fix the x and y position
but allow z to be free. For _energy_minimize_openbabel

ignore_compounds: Compound, optional, default=None
An individual compound or list of Compounds whose underlying particles
will have their positions fixed and not interact with other atoms via the spec-
ified force field during the energy minimization process. Note, a restrain-
ing potential used and thus absolute position may vary as a result of the
energy minimization process. Interactions of these ignored atoms can be
specified by the user, e.g., by explicitly setting a distance constraint. For
_energy_minimize_openbabel

distance_constraints: list, optional, default=None
A list containing a pair of Compounds as a tuple or list and a float value spec-
ifying the target distance between the two Compounds, e.g.,: [(compound1,
compound2), distance]. To specify more than one constraint, pass constraints
as a 2D list, e.g.,: [[(compound1, compound2), distance1], [(compound3,
compound4), distance2]]. Note, Compounds specified here must represent
individual point particles. For _energy_minimize_openbabel

constraint_factor: float, optional, default=50000.0
Harmonic springs are used to constrain distances and fix atom positions,
where the resulting energy associated with the spring is scaled by the con-
straint_factor; the energy of this spring is considering during the minimiza-
tion. As such, very small values of the constraint_factor may result in an en-
ergy minimized state that does not adequately restrain the distance/position
of atoms. For _energy_minimize_openbabel

scale_bonds
[float, optional, default=1] Scales the bond force constant (1 is completely on).
For _energy_minimize_openmm

scale_angles
[float, optional, default=1] Scales the angle force constant (1 is completely on)
For _energy_minimize_openmm

scale_torsions
[float, optional, default=1] Scales the torsional force constants (1 is completely
on) For _energy_minimize_openmm Note: Only Ryckaert-Bellemans style
torsions are currently supported

scale_nonbonded
[float, optional, default=1] Scales epsilon (1 is completely on) For _en-
ergy_minimize_openmm

constraints

57

[str, optional, default=”AllBonds”] Specify constraints on the molecule to
minimize, options are: None, “HBonds”, “AllBonds”, “HAngles” For _en-
ergy_minimize_openmm

References

If using _energy_minimize_openmm(), please cite:

If using _energy_minimize_openbabel(), please cite:

If using the ‘MMFF94’ force field please also cite the following:

If using the ‘MMFF94s’ force field please cite the above along with:

If using the ‘UFF’ force field please cite the following:

If using the ‘GAFF’ force field please cite the following:

If using the ‘Ghemical’ force field please cite the following:

[Eastman2013], [OBoyle2011], [OpenBabel], [Halgren1996a], [Halgren1996b],
[Halgren1996c], [Halgren1996d], [Halgren1996e], [Halgren1999], [Rappe1992], [Wang2004],
[Hassinen2001]

flatten(inplace=True)
Flatten the hierarchical structure of the Compound.

Modify the mBuild Compound to become a Compound where there is a single container
(self) that contains all the particles.

freud_generate_bonds(name_a, name_b, dmin, dmax)
Add Bonds between all pairs of types a/b within [dmin, dmax].

Parameters

name_a
[str] The name of one of the Particles to be in each bond

name_b
[str] The name of the other Particle to be in each bond

dmin
[float] The minimum distance (in nm) between Particles for considering a
bond

dmax
[float] The maximum distance (in nm) between Particles for considering a
bond

Notes

This is an experimental feature and some behavior might change out of step of a standard
development release.

from_gmso(topology, coords_only=False, infer_hierarchy=True)
Convert a GMSO Topology to mBuild Compound.

Returns

compound
[mb.Compound]

58

from_parmed(structure, coords_only=False, infer_hierarchy=True)
Extract atoms and bonds from a pmd.Structure.

Will create sub-compounds for every chain if there is more than one and sub-sub-
compounds for every residue.

Parameters

structure
[pmd.Structure] The structure to load.

coords_only
[bool] Set preexisting atoms in compound to coordinates given by structure.

infer_hierarchy
[bool, optional, default=True] If true, infer compound hierarchy from chains
and residues

from_pybel(pybel_mol, use_element=True, coords_only=False, infer_hierarchy=True,
ignore_box_warn=False)

Create a Compound from a Pybel.Molecule.

Parameters

pybel_mol: pybel.Molecule
use_element

[bool, default True] If True, construct mb Particles based on the pybel Atom’s
element. If False, construcs mb Particles based on the pybel Atom’s type

coords_only
[bool, default False] Set preexisting atoms in compound to coordinates given
by structure. Note: Not yet implemented, included only for parity with other
conversion functions

infer_hierarchy
[bool, optional, default=True] If True, infer hierarchy from residues

ignore_box_warn
[bool, optional, default=False] If True, ignore warning if no box is present.

See also:

mbuild.conversion.from_pybel

from_trajectory(traj, frame=-1, coords_only=False, infer_hierarchy=True)
Extract atoms and bonds from a md.Trajectory.

Will create sub-compounds for every chain if there is more than one and sub-sub-
compounds for every residue.

Parameters

traj
[mdtraj.Trajectory] The trajectory to load.

frame
[int, optional, default=-1 (last)] The frame to take coordinates from.

coords_only
[bool, optional, default=False] Only read coordinate information

infer_hierarchy
[bool, optional, default=True] If True, infer compound hierarchy from chains
and residues

59

See also:

mbuild.conversion.from_trajectory

generate_bonds(name_a, name_b, dmin, dmax)
Add Bonds between all pairs of types a/b within [dmin, dmax].

Parameters

name_a
[str] The name of one of the Particles to be in each bond

name_b
[str] The name of the other Particle to be in each bond

dmin
[float] The minimum distance (in nm) between Particles for considering a
bond

dmax
[float] The maximum distance (in nm) between Particles for considering a
bond

get_boundingbox(pad_box=None)
Compute the bounding box of the compound.

Compute and store the rectangular bounding box of the Compound.

Parameters

pad_box: Sequence, optional, default=None
Pad all lengths or a list of lengths by a specified amount in nm. Acceptable
values are:

• A single float: apply this pad value to all 3 box lengths.

• A sequence of length 1: apply this pad value to all 3 box lengths.

• A sequence of length 3: apply these pad values to the a, b, c box lengths.

Returns

mb.Box
The bounding box for this Compound.

Notes

Triclinic bounding boxes are supported, but only for Compounds that are generated from
mb.Lattice’s and the resulting mb.Lattice.populate method

get_smiles()
Get SMILES string for compound.

Bond order is guessed with pybel and may lead to incorrect SMILES strings.

Returns

smiles_string: str

is_independent()
Return True if there is no bond between particles of the Compound to an external Com-
pound.

60

label_rigid_bodies(discrete_bodies=None, rigid_particles=None)
Designate which Compounds should be treated as rigid bodies.

If no arguments are provided, this function will treat the compound as a single rigid body
by providing all particles in self with the same rigid_id. If discrete_bodies is not None, each
instance of a Compound with a name found in discrete_bodies will be treated as a unique
rigid body. If rigid_particles is not None, only Particles (Compounds at the bottom of the
containment hierarchy) matching this name will be considered part of the rigid body.

Parameters

discrete_bodies
[str or list of str, optional, default=None] Name(s) of Compound instances to
be treated as unique rigid bodies. Compound instances matching this (these)
name(s) will be provided with unique rigid_ids

rigid_particles
[str or list of str, optional, default=None] Name(s) of Compound instances
at the bottom of the containment hierarchy (Particles) to be included in rigid
bodies. Only Particles matching this (these) name(s) will have their rigid_ids
altered to match the rigid body number.

Examples

Creating a rigid benzene

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.label_rigid_bodies()

Creating a semi-rigid benzene, where only the carbons are treated as a rigid body

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.label_rigid_bodies(rigid_particles='C')

Create a box of rigid benzenes, where each benzene has a unique rigid body ID.

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.name = 'Benzene'
>>> filled = mb.fill_box(benzene,
... n_compounds=10,
... box=[0, 0, 0, 4, 4, 4])
>>> filled.label_rigid_bodies(distinct_bodies='Benzene')

Create a box of semi-rigid benzenes, where each benzene has a unique rigid body ID and
only the carbon portion is treated as rigid.

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> benzene = mb.load(get_fn('benzene.mol2'))
>>> benzene.name = 'Benzene'
>>> filled = mb.fill_box(benzene,

(continues on next page)

61

(continued from previous page)

... n_compounds=10,

... box=[0, 0, 0, 4, 4, 4])
>>> filled.label_rigid_bodies(distinct_bodies='Benzene',
... rigid_particles='C')

property mass
Return the total mass of a compound.

If the compound contains children compouds, the total mass of all children compounds
is returned. If the compound contains element information (Compound.element) then the
mass is inferred from the elemental mass. If Compound.mass has been set explicitly, then
it will override the mass inferred from Compound.element. If neither of a Compound’s
element or mass attributes have been set, then a mass of zero is returned.

property max_rigid_id
Return the maximum rigid body ID contained in the Compound.

This is usually used by compound.root to determine the maximum rigid_id in the contain-
ment hierarchy.

Returns

int or None
The maximum rigid body ID contained in the Compound. If no rigid body
IDs are found, None is returned

property maxs
Return the maximum x, y, z coordinate of any particle in this compound.

min_periodic_distance(xyz0, xyz1)
Vectorized distance calculation considering minimum image.

Only implemented for orthorhombic simulation boxes.

Parameters

xyz0
[np.ndarray, shape=(3,), dtype=float] Coordinates of first point

xyz1
[np.ndarray, shape=(3,), dtype=float] Coordinates of second point

Returns

float
Vectorized distance between the two points following minimum image con-
vention

property mins
Return the mimimum x, y, z coordinate of any particle in this compound.

property n_bonds
Return the total number of bonds in the Compound.

Returns

int
The number of bonds in the Compound

62

property n_direct_bonds
Return the number of bonds a particle is directly involved in.

This method should only be used on on compounds at the bottom of their hierarchy (i.e. a
particle).

Returns

int
The number of compounds this compound is directly bonded to.

property n_particles
Return the number of Particles in the Compound.

Returns

int,
The number of Particles in the Compound

particles(include_ports=False)
Return all Particles of the Compound.

Parameters

include_ports
[bool, optional, default=False] Include port particles

Yields

mb.Compound
The next Particle in the Compound

particles_by_element(element)
Return all Particles of the Compound with a specific element.

Parameters

name
[str or ele.Element] element abbreviation or element

Yields

mb.Compound
The next Particle in the Compound with the user-specified element

particles_by_name(name)
Return all Particles of the Compound with a specific name.

Parameters

name
[str] Only particles with this name are returned

Yields

mb.Compound
The next Particle in the Compound with the user-specified name

particles_in_range(compound, dmax, max_particles=20, particle_kdtree=None,
particle_array=None)

Find particles within a specified range of another particle.

Parameters

compound
[mb.Compound] Reference particle to find other particles in range of

63

dmax
[float] Maximum distance from ‘compound’ to look for Particles

max_particles
[int, optional, default=20] Maximum number of Particles to return

particle_kdtree
[mb.PeriodicKDTree, optional] KD-tree for looking up nearest neighbors. If
not provided, a KD- tree will be generated from all Particles in self

particle_array
[np.ndarray, shape=(n,), dtype=mb.Compound, optional] Array of possible
particles to consider for return. If not provided, this defaults to all Particles
in self

Returns

np.ndarray, shape=(n,), dtype=mb.Compound
Particles in range of compound according to user-defined limits

See also:

periodic_kdtree.PerioidicKDTree
mBuild implementation of kd-trees

scipy.spatial.kdtree
Further details on kd-trees

property periodicity
Get the periodicity of the Compound.

property pos
Get the position of the Compound.

If the Compound contains children, returns the center.

The position of a Compound containing children can’t be set.

print_hierarchy(print_full=False, index=None, show_tree=True)
Print the hierarchy of the Compound.

Parameters

print_full: bool, optional, default=False
The full hierarchy will be printed, rather than condensing compounds with
identical topologies. Topologies are considered identical if they have the same
name, contain the number and names of children, contain the same number
and names of particles, and the same number of bonds.

index: int, optional, default=None
Print the branch of the first level of the hiearchy corresponding to the value
specified by index. This only applies when print_full is True.

show_tree: bool, optional, default=True
If False, do not print the tree to the screen.

Returns

tree, treelib.tree.Tree, hierarchy of the compound as a tree

referenced_ports()
Return all Ports referenced by this Compound.

Returns

64

list of mb.Compound
A list of all ports referenced by the Compound

remove(objs_to_remove, reset_labels=True)
Remove children from the Compound cleanly.

Parameters

objs_to_remove
[mb.Compound or list of mb.Compound] The Compound(s) to be removed
from self

reset_labels
[bool] If True, the Compound labels will be reset

remove_bond(particle_pair)
Delete a bond between a pair of Particles.

Parameters

particle_pair
[indexable object, length=2, dtype=mb.Compound] The pair of Particles to
remove the bond between

property rigid_id
Get the rigid_id of the Compound.

rigid_particles(rigid_id=None)
Generate all particles in rigid bodies.

If a rigid_id is specified, then this function will only yield particles with a matching rigid_id.

Parameters

rigid_id
[int, optional] Include only particles with this rigid body ID

Yields

mb.Compound
The next particle with a rigid_id that is not None, or the next particle with a
matching rigid_id if specified

property root
Get the Compound at the top of self’s hierarchy.

Returns

mb.Compound
The Compound at the top of self’s hierarchy

rotate(theta, around)
Rotate Compound around an arbitrary vector.

Parameters

theta
[float] The angle by which to rotate the Compound, in radians.

around
[np.ndarray, shape=(3,), dtype=float] The vector about which to rotate the
Compound.

65

rotate_dihedral(bond, phi)
Rotate a dihedral about a central bond.

Parameters

bond
[indexable object, length=2, dtype=mb.Compound] The pair of bonded Par-
ticles in the central bond of the dihedral

phi
[float] The angle by which to rotate the dihedral, in radians.

save(filename, include_ports=False, forcefield_name=None, forcefield_files=None,
forcefield_debug=False, box=None, overwrite=False, residues=None, combining_rule='lorentz',
foyer_kwargs=None, parmed_kwargs=None, **kwargs)

Save the Compound to a file.

Parameters

filename
[str] Filesystem path in which to save the trajectory. The extension or prefix
will be parsed and control the format. Supported extensions: ‘hoomdxml’,
‘gsd’, ‘gro’, ‘top’, ‘lammps’, ‘lmp’, ‘mcf’, ‘pdb’, ‘xyz’, ‘json’, ‘mol2’, ‘sdf’, ‘psf’.
See parmed/structure.py for more information on savers.

include_ports
[bool, optional, default=False] Save ports contained within the compound.

forcefield_files
[str, optional, default=None] Apply a forcefield to the output file using a
forcefield provided by the foyer package.

forcefield_name
[str, optional, default=None] Apply a named forcefield to the output file us-
ing the foyer package, e.g. ‘oplsaa’. Foyer forcefields69

forcefield_debug
[bool, optional, default=False] Choose verbosity level when applying a force-
field through foyer. Specifically, when missing atom types in the forcefield
xml file, determine if the warning is condensed or verbose.

box
[mb.Box, optional, default=self.boundingbox (with buffer)] Box information
to be written to the output file. If ‘None’, a bounding box is used with 0.25nm
buffers at each face to avoid overlapping atoms.

overwrite
[bool, optional, default=False] Overwrite if the filename already exists

residues
[str of list of str] Labels of residues in the Compound. Residues are assigned
by checking against Compound.name.

combining_rule
[str, optional, default=’lorentz’] Specify the combining rule for nonbonded in-
teractions. Only relevant when the foyer package is used to apply a forcefield.
Valid options are ‘lorentz’ and ‘geometric’, specifying Lorentz-Berthelot and
geometric combining rules respectively.

foyer_kwargs
[dict, optional, default=None] Keyword arguments to provide to
foyer.Forcefield.apply. Depending on the file extension these will be

66

https://github.com/mosdef-hub/foyer/tree/master/foyer/forcefields

passed to either write_gsd, write_hoomdxml, write_lammpsdata, write_mcf, or
parmed.Structure.save. See parmed structure documentation70

parmed_kwargs
[dict, optional, default=None] Keyword arguments to provide to mbuild.
Compound.to_parmed()

**kwargs
Depending on the file extension these will be passed to either write_gsd,
write_hoomdxml, write_lammpsdata, write_mcf, or parmed.Structure.save. See
https://parmed.github.io/ParmEd/html/structobj/parmed.structure.
Structure.html#parmed.structure.Structure.save

Other Parameters

ref_distance
[float, optional, default=1.0] Normalization factor used when saving to .gsd
and .hoomdxml formats for converting distance values to reduced units.

ref_energy
[float, optional, default=1.0] Normalization factor used when saving to .gsd
and .hoomdxml formats for converting energy values to reduced units.

ref_mass
[float, optional, default=1.0] Normalization factor used when saving to .gsd
and .hoomdxml formats for converting mass values to reduced units.

atom_style: str, default=’full’
Defines the style of atoms to be saved in a LAMMPS data file. The following
atom styles are currently supported: ‘full’, ‘atomic’, ‘charge’, ‘molecular’ See
LAMMPS atom style documentation71 for more information.

unit_style: str, default=’real’
Defines to unit style to be save in a LAMMPS data file. Defaults to ‘real’
units. Current styles are supported: ‘real’, ‘lj’. See LAMMPS unit style docu-
mentation_72 for more information.

See also:

conversion.save
Main saver logic

formats.gsdwrite.write_gsd
Write to GSD format

formats.hoomdxml.write_hoomdxml
Write to Hoomd XML format

formats.xyzwriter.write_xyz
Write to XYZ format

formats.lammpsdata.write_lammpsdata
Write to LAMMPS data format

formats.cassandramcf.write_mcf
Write to Cassandra MCF format

formats.json_formats.compound_to_json
Write to a json file

67

https://parmed.github.io/ParmEd/html/structobj/parmed.structure.Structure.html#parmed.structure.Structure.save
https://parmed.github.io/ParmEd/html/structobj/parmed.structure
https://lammps.sandia.gov/doc/atom_style.html
https://lammps.sandia.gov/doc/units.html
https://lammps.sandia.gov/doc/units.html

Notes

When saving the compound as a json, only the following arguments are used: * filename *
include_ports

spin(theta, around, anchor=None)
Rotate Compound in place around an arbitrary vector.

Parameters

theta
[float] The angle by which to rotate the Compound, in radians.

around
[np.ndarray, shape=(3,), dtype=float] The axis about which to spin the Com-
pound.

anchor
[mb.Compound, optional, default=None (self)] Anchor compound/particle
to perform spinning. If the anchor is not a particle, the spin will be around
the center of the anchor Compound.

successors()
Yield Compounds below self in the hierarchy.

Yields

mb.Compound
The next Particle below self in the hierarchy

to_gmso(**kwargs)
Create a GMSO Topology from a mBuild Compound.

Parameters

compound
[mb.Compound] The mb.Compound to be converted.

Returns

topology
[gmso.Topology] The converted gmso Topology

to_intermol(molecule_types=None)
Create an InterMol system from a Compound.

Parameters

molecule_types
[list or tuple of subclasses of Compound]

Returns

intermol_system
[intermol.system.System]

See also:

mbuild.conversion.to_intermol

to_networkx(names_only=False)
Create a NetworkX graph representing the hierarchy of a Compound.

Parameters

68

names_only
[bool, optional, default=False] Store only the names of the compounds in the
graph, appended with their IDs, for distinction even if they have the same
name. When set to False, the default behavior, the nodes are the compounds
themselves.

Returns

G
[networkx.DiGraph]

See also:

mbuild.conversion.to_networkx
mbuild.bond_graph

Notes

This digraph is not the bondgraph of the compound.

to_parmed(box=None, title='', residues=None, include_ports=False, infer_residues=False,
infer_residues_kwargs={})

Create a ParmEd Structure from a Compound.

Parameters

box
[mb.Box, optional, default=self.boundingbox (with buffer)] Box information
to be used when converting to a Structure. If ‘None’, self.box is used. If
self.box is None, a bounding box is used with 0.5 nm buffer in each dimen-
sion to avoid overlapping atoms.

title
[str, optional, default=self.name] Title/name of the ParmEd Structure

residues
[str of list of str, optional, default=None] Labels of residues in the Compound.
Residues are assigned by checking against Compound.name.

include_ports
[boolean, optional, default=False] Include all port atoms when converting to
a Structure.

infer_residues
[bool, optional, default=True] Attempt to assign residues based on the num-
ber of bonds and particles in an object. This option is not used if residues ==
None

infer_residues_kwargs
[dict, optional, default={}] Keyword arguments for mbuild.conversion.
pull_residues()

Returns

parmed.structure.Structure
ParmEd Structure object converted from self

See also:

mbuild.conversion.to_parmed
parmed.structure.Structure

Details on the ParmEd Structure object

69

to_pybel(box=None, title='', residues=None, include_ports=False, infer_residues=False)
Create a pybel.Molecule from a Compound.

Parameters

box
[mb.Box, def None]

title
[str, optional, default=self.name] Title/name of the ParmEd Structure

residues
[str of list of str] Labels of residues in the Compound. Residues are assigned
by checking against Compound.name.

include_ports
[boolean, optional, default=False] Include all port atoms when converting to
a Structure.

infer_residues
[bool, optional, default=False] Attempt to assign residues based on names of
children

Returns

pybel.Molecule

See also:

mbuild.conversion.to_pybel

Notes

Most of the mb.Compound is first converted to openbabel.OBMol And then pybel creates
a pybel.Molecule from the OBMol Bond orders are assumed to be 1 OBMol atom indexing
starts at 1, with spatial dimension Angstrom

to_rdkit()
Create an RDKit RWMol from an mBuild Compound.

Returns

rdkit.Chem.RWmol

Notes

Use this method to utilzie rdkit funcitonality. This method only works when the mBuild
compound contains accurate element information. As a result, this method is not compati-
ble with compounds containing abstract particles (e.g. coarse-grained systems)

to_smiles(backend='pybel')
Create a SMILES string from an mbuild compound.

Parameters

compound
[mb.Compound.] The mbuild compound to be converted.

backend
[str, optional, default=”pybel”] Backend used to do the conversion.

70

to_trajectory(include_ports=False, chains=None, residues=None, box=None)
Convert to an md.Trajectory and flatten the compound.

Parameters

include_ports
[bool, optional, default=False] Include all port atoms when converting to tra-
jectory.

chains
[mb.Compound or list of mb.Compound] Chain types to add to the topology

residues
[str of list of str] Labels of residues in the Compound. Residues are assigned
by checking against Compound.name.

box
[mb.Box, optional, default=self.boundingbox (with buffer)] Box information
to be used when converting to a Trajectory. If ‘None’, self.box is used. If
self.box is None, a bounding box is used with a 0.5 nm buffer in each dimen-
sion to avoid overlapping atoms.

Returns

trajectory
[md.Trajectory]

See also:

_to_topology

translate(by)
Translate the Compound by a vector.

Parameters

by
[np.ndarray, shape=(3,), dtype=float]

translate_to(pos)
Translate the Compound to a specific position.

Parameters

pos
[np.ndarray, shape=3(,), dtype=float]

unlabel_rigid_bodies()
Remove all rigid body labels from the Compound.

update_coordinates(filename, update_port_locations=True)
Update the coordinates of this Compound from a file.

Parameters

filename
[str] Name of file from which to load coordinates. Supported file types are
the same as those supported by load()

update_port_locations
[bool, optional, default=True] Update the locations of Ports so that they are
shifted along with their anchor particles. Note: This conserves the location
of Ports with respect to the anchor Particle, but does not conserve the orien-
tation of Ports with respect to the molecule as a whole.

71

See also:

load
Load coordinates from a file

visualize(show_ports=False, backend='py3dmol', color_scheme={}, bead_size=0.3)
Visualize the Compound using py3dmol (default) or nglview.

Allows for visualization of a Compound within a Jupyter Notebook.

Parameters

show_ports
[bool, optional, default=False] Visualize Ports in addition to Particles

backend
[str, optional, default=’py3dmol’] Specify the backend package to visualize
compounds Currently supported: py3dmol, nglview

color_scheme
[dict, optional] Specify coloring for non-elemental particles keys are strings
of the particle names values are strings of the colors i.e. {‘_CGBEAD’: ‘blue’}

bead_size
[float, Optional, default=0.3] Size of beads in visualization

property xyz
Return all particle coordinates in this compound.

Returns

pos
[np.ndarray, shape=(n, 3), dtype=float] Array with the positions of all parti-
cles.

property xyz_with_ports
Return all particle coordinates in this compound including ports.

Returns

pos
[np.ndarray, shape=(n, 3), dtype=float] Array with the positions of all parti-
cles and ports.

64 http://openbabel.org/docs/dev/
65 http://openmm.org/
66 https://github.com/mosdef-hub/foyer
67 http://open-babel.readthedocs.io/en/latest/Forcefields/Overview.html
68 http://docs.openmm.org/7.0.0/userguide/application.html#creating-force-fields
69 https://github.com/mosdef-hub/foyer/tree/master/foyer/forcefields
70 https://parmed.github.io/ParmEd/html/structobj/parmed.structure.Structure.html#parmed.structure.Structure.save
71 https://lammps.sandia.gov/doc/atom_style.html
72 https://lammps.sandia.gov/doc/units.html

72

Box

class mbuild.Box(lengths, angles=None, precision=None)
A box representing the bounds of the system.

Parameters

lengths
[list-like, shape=(3,), dtype=float] Lengths of the edges of the box.

angles
[list-like, shape=(3,), dtype=float, default=None] Angles (in degrees) that de-
fine the tilt of the edges of the box. If None is given, angles are assumed
to be [90.0, 90.0, 90.0]. These are also known as alpha, beta, gamma in the
crystallography community.

precision
[int, optional, default=None] Control the precision of the floating point repre-
sentation of box attributes. If none provided, the default is 6 decimals.

Notes

Box vectors are expected to be provided in row-major format.

Attributes

vectors
[np.ndarray, shape=(3,3), dtype=float] Box representation as a 3x3 matrix.

lengths
[tuple, shape=(3,), dtype=float] Lengths of the box.

angles
[tuple, shape=(3,), dtype=float] Angles defining the tilt of the box (alpha, beta,
gamma).

Lx
[float] Length in the x direction.

Ly
[float] Length in the y direction.

Lz
[float] Length in the z direction.

xy
[float] Tilt factor xy of the box.

xz
[float] Tilt factor xz of the box.

yz
[float] Tilt factor yz of the box.

precision
[int] Amount of decimals to represent floating point values.

property Lx
Length in the x direction.

property Ly
Length in the y direction.

73

property Lz
Length in the z direction.

property angles
Angles defining the tilt of the box (alpha, beta, gamma).

property box_parameters
Lengths and tilt factors of the box.

property bravais_parameters
Return the Box representation as Bravais lattice parameters.

Based on the box vectors, return the parameters to describe the box in terms of the Bravais
lattice parameters:

a,b,c = the edges of the Box alpha, beta, gamma = angles(tilt) of the parallelepiped,
in degrees

Returns

parameters
[tuple of floats,] (a, b, c, alpha, beta, gamma)

classmethod from_lengths_angles(lengths, angles, precision=None)
Generate a box from lengths and angles.

classmethod from_lengths_tilt_factors(lengths, tilt_factors=None, precision=None)
Generate a box from box lengths and tilt factors.

classmethod from_lo_hi_tilt_factors(lo, hi, tilt_factors, precision=None)
Generate a box from a lo, hi convention and tilt factors.

classmethod from_mins_maxs_angles(mins, maxs, angles, precision=None)
Generate a box from min/max distance calculations and angles.

classmethod from_uvec_lengths(uvec, lengths, precision=None)
Generate a box from unit vectors and lengths.

classmethod from_vectors(vectors, precision=None)
Generate a box from box vectors.

property lengths
Lengths of the box.

property precision
Amount of decimals to represent floating point values.

property tilt_factors
Return the 3 tilt_factors (xy, xz, yz) of the box.

property vectors
Box representation as a 3x3 matrix.

property xy
Tilt factor xy of the box.

property xz
Tilt factor xz of the box.

property yz
Tilt factor yz of the box.

74

Lattice

class mbuild.Lattice(lattice_spacing=None, lattice_vectors=None, lattice_points=None, angles=None)
Develop crystal structure from user defined inputs.

Lattice, the abstract building block of a crystal cell. Once defined by the user, the lattice can then
be populated with Compounds and replicated as many cell lengths desired in 3D space.

A Lattice is defined through the Bravais lattice definitions. With edge vectors a1, a2, a3; lattice
spacing a,b,c; and lattice points at unique fractional positions between 0-1 in 3 dimensions. This
encapsulates distance, area, volume, depending on the parameters defined.

Parameters

lattice_spacing
[array-like, shape=(3,), required, dtype=float] Array of lattice spacings a,b,c for
the cell.

lattice_vectors
[array-like, shape=(3, 3), optional, default=None,] Vectors that encase the unit
cell corresponding to dimension. Will only default to these values if no angles
were defined as well. If None is given, assumes an identity matrix [[1,0,0],
[0,1,0], [0,0,1]]

lattice_points
[dictionary, shape={‘id’: [[nested list of positions]]] optional, default={‘default’:
[[0.,0.,0.]]} Locations of all lattice points in cell using fractional coordinates.

angles
[array-like, shape=(3,), optional, dtype=float] Array of inter-planar Bravais an-
gles in degrees.

Examples

Generating a triclinic lattice for cholesterol.

>>> import mbuild as mb
>>> from mbuild.utils.io import get_fn
>>> # reading in the lattice parameters for crystalline cholesterol
>>> angle_values = [94.64, 90.67, 96.32]
>>> spacing = [1.4172, 3.4209, 1.0481]
>>> basis = {'cholesterol':[[0., 0., 0.]]}
>>> cholesterol_lattice = mb.Lattice(spacing,
... angles=angle_values,
... lattice_points=basis)
>>>
>>> # The lattice based on the bravais lattice parameters of crystalline
>>> # cholesterol was generated.
>>>
>>> # Replicating the triclinic unit cell out 3 replications
>>> # in x,y,z directions.
>>>
>>> cholesterol_unit = mb.Compound()
>>> cholesterol_unit = mb.load(get_fn('cholesterol.pdb'))
>>> # associate basis vector with id 'cholesterol' to cholesterol Compound
>>> basis_dictionary = {'cholesterol' : cholesterol_unit}
>>> expanded_cell = cholesterol_lattice.populate(x=3, y=3, z=3,
... compound_dict=basis_dictionary)

75

The unit cell of cholesterol was associated with a Compound that contains the connectivity data
and spatial arrangements of a cholesterol molecule. The unit cell was then expanded out in x,y,z
directions and cholesterol Compounds were populated.

Generating BCC CsCl crystal structure

>>> import mbuild as mb
>>> chlorine = mb.Compound(name='Cl')
>>> # angles not needed, when not provided, defaults to 90,90,90
>>> cesium = mb.Compound(name='Cs')
>>> spacing = [.4123, .4123, .4123]
>>> basis = {'Cl' : [[0., 0., 0.]], 'Cs' : [[.5, .5, .5]]}
>>> cscl_lattice = mb.Lattice(spacing, lattice_points=basis)
>>>
>>> # Now associate id with Compounds for lattice points and replicate 3x
>>>
>>> cscl_dict = {'Cl' : chlorine, 'Cs' : cesium}
>>> cscl_compound = cscl_lattice.populate(x=3, y=3, z=3,
... compound_dict=cscl_dict)

A multi-Compound basis was created and replicated. For each unique basis atom position, a
separate entry must be completed for the basis_atom input.

Generating FCC Copper cell with lattice_vectors instead of angles

>>> import mbuild as mb
>>> copper = mb.Compound(name='Cu')
>>> lattice_vector = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
>>> spacing = [.36149, .36149, .36149]
>>> copper_locations = [[0., 0., 0.], [.5, .5, 0.],
... [.5, 0., .5], [0., .5, .5]]
>>> basis = {'Cu' : copper_locations}
>>> copper_lattice = mb.Lattice(lattice_spacing = spacing,
... lattice_vectors=lattice_vector,
... lattice_points=basis)
>>> copper_dict = {'Cu' : copper}
>>> copper_pillar = copper_lattice.populate(x=3, y=3, z=20,
... compound_dict=copper_dict)

Generating the 2d Structure Graphene carbon backbone

>>> import mbuild as mb
>>> carbon = mb.Compound(name='C')
>>> angles = [90, 90, 120]
>>> carbon_locations = [[0, 0, 0], [2/3, 1/3, 0]]
>>> basis = {'C' : carbon_locations}
>>> graphene = mb.Lattice(lattice_spacing=[.2456, .2456, 0],
... angles=angles, lattice_points=basis)
>>> carbon_dict = {'C' : carbon}
>>> graphene_cell = graphene.populate(compound_dict=carbon_dict,
... x=3, y=3, z=1)

Attributes

dimension
[int, 3] Default dimensionality within mBuild. If choosing a lower dimension,
pad the relevant arrays with zeroes.

76

lattice_spacing
[numpy array, shape=(3,), required, dtype=float] Array of lattice spacings a,b,c
for the cell.

lattice_vectors
[numpy array, shape=(3, 3), optional] default=[[1,0,0], [0,1,0], [0,0,1]] Vectors
that encase the unit cell corresponding to dimension. Will only default to
these values if no angles were defined as well.

lattice_points
[dictionary, shape={‘id’: [[nested list of positions]]] optional, default={‘default’:
[[0.,0.,0.]]} Locations of all lattice points in cell using fractional coordinates.

angles
[numpy array, shape=(3,), optional, dtype=float] Array of inter-planar Bravais
angles

populate(compound_dict=None, x=1, y=1, z=1)
Expand lattice and create compound from lattice.

Expands lattice based on user input. The user must also pass in a dictionary that contains
the keys that exist in the basis_dict. The corresponding Compound will be the full lattice
returned to the user.

If no dictionary is passed to the user, Dummy Compounds will be used.

Parameters

x
[int, optional, default=1] How many iterations in the x direction.

y
[int, optional, default=1] How many iterations in the y direction.

z
[int, optional, default=1] How many iterations in the z direction.

compound_dict
[dictionary, optional, default=None] Link between basis_dict and Com-
pounds.

Raises

ValueError
incorrect x,y, or z values.

TypeError
incorrect type for basis vector

Notes

Called after constructor by user.

77

Port

class mbuild.Port(anchor=None, orientation=None, separation=0)
A set of four ghost Particles used to connect parts.

Parameters

anchor
[mb.Particle, optional, default=None] A Particle associated with the port. Used
to form bonds.

orientation
[array-like, shape=(3,), optional, default=[0, 1, 0]] Vector along which to orient
the port

separation
[float, optional, default=0] Distance to shift port along the orientation vector
from the anchor particle position. If no anchor is provided, the port will be
shifted from the origin.

Attributes

anchor
[mb.Particle, optional, default=None] A Particle associated with the port. Used
to form bonds.

up
[mb.Compound] Collection of 4 ghost particles used to perform equivalence
transforms. Faces the opposite direction as self[‘down’].

down
[mb.Compound] Collection of 4 ghost particles used to perform equivalence
transforms. Faces the opposite direction as self[‘up’].

used
[bool] Status of whether a port has been occupied following an equivalence
transform.

property access_labels
List labels used to access the Port.

Returns

list of str
Strings that can be used to access this Port relative to self.root

property center
Get the cartesian center of the Port.

property direction
Get the unit vector pointing in the ‘direction’ of the Port.

property separation
Get the distance between a port and its anchor particle.

If the port has no anchor particle, returns None.

update_orientation(orientation)
Change the direction between a port and its anchor particle.

orientation
[array-like, shape=(3,), required] Vector along which to orient the port

78

update_separation(separation)
Change the distance between a port and its anchor particle.

separation
[float, required] Distance to shift port along the orientation vector from the anchor
particle position. If no anchor is provided, the port will be shifted from the origin.

1.8 Loading Data

Data is input into mBuild in a few different ways or from different file types.

Load

Load a file or an existing topology into an mbuild Compound.

Files are read using the predefined backend, unless otherwise specified by the user (through the
backend flag). Supported backends include “pybel”, “mdtraj”, “parmed”, “rdkit”, and “internal”.
Please refer to http://mdtraj.org/1.8.0/load_functions.html for formats supported by MDTraj and
https://parmed.github.io/ParmEd/html/readwrite.html for formats supported by ParmEd.

Parameters

filename_or_object
[str, mdtraj.Trajectory, parmed.Structure,] mbuild.Compound, pybel.Molecule, Name of the file
or topology from which to load atom and bond information.

relative_to_module
[str, optional, default=None] Instead of looking in the current working directory, look for the
file where this module is defined. This is typically used in Compound classes that will be
instantiated from a different directory (such as the Compounds located in mbuild.lib).

compound
[mb.Compound, optional, default=None] Existing compound to load atom and bond informa-
tion into. New structure will be added to the existing compound as a sub compound.

coords_only
[bool, optional, default=False] Only load the coordinates into an existing compound.

rigid
[bool, optional, default=False] Treat the compound as a rigid body

backend
[str, optional, default=None] Backend used to load structure from file or string. If not specified,
a default backend (extension specific) will be used.

smiles: bool, optional, default=False
Use RDKit or OpenBabel to parse filename as a SMILES string or file containing a SMILES string.
If this is set to True, rdkit is the default backend.

infer_hierarchy
[bool, optional, default=True] If True, infer hierarchy from chains and residues

ignore_box_warn
[bool, optional, default=False] If True, ignore warning if no box is present. Defaults to True when
loading from SMILES

**kwargs
[keyword arguments] Key word arguments passed to mdTraj, GMSO, RDKit, or pybel for load-
ing.

79

http://mdtraj.org/1.8.0/load_functions.html
https://parmed.github.io/ParmEd/html/readwrite.html

Returns

compound : mb.Compound

Notes

If smiles is True, either rdkit (default) or pybel can be used, but RDkit is the only option of these that
allows the user to specify a random number seed to reproducibly generate the same starting structure.
This is NOT possible with openbabel, use rdkit if you need control over starting structure’s position
(recommended).

Load CIF

Load a CifFile object into an mbuild.Lattice.

Parameters

wrap_coords
[bool, False] Wrap the lattice points back into the 0-1 acceptable coordinates.

Returns

mbuild.Lattice

1.9 Coordinate Transformations

The following utility functions provide mechanisms for spatial transformations for mbuild com-
pounds:

mbuild.coordinate_transform.force_overlap(move_this, from_positions, to_positions,
add_bond=True)

Move a Compound such that a position overlaps with another.

Computes an affine transformation that maps the from_positions to the respective to_positions,
and applies this transformation to the compound.

Parameters

move_this
[mb.Compound] The Compound to be moved.

from_positions
[np.ndarray, shape=(n, 3), dtype=float] Original positions.

to_positions
[np.ndarray, shape=(n, 3), dtype=float] New positions.

add_bond
[bool, optional, default=True] If from_positions and to_positions are Ports, create
a bond between the two anchor atoms.

mbuild.coordinate_transform.x_axis_transform(compound, new_origin=None,
point_on_x_axis=None,
point_on_xy_plane=None)

Move a compound such that the x-axis lies on specified points.

80

Parameters

compound
[mb.Compound] The compound to move.

new_origin
[mb.Compound or list-like of size 3, default=[0.0, 0.0, 0.0]] Where to place the
new origin of the coordinate system.

point_on_x_axis
[mb.Compound or list-like of size 3, default=[1, 0, 0]] A point on the new
x-axis.

point_on_xy_plane
[mb.Compound or list-like of size 3, default=[1, 0, 0]] A point on the new
xy-plane.

mbuild.coordinate_transform.y_axis_transform(compound, new_origin=None,
point_on_y_axis=None,
point_on_xy_plane=None)

Move a compound such that the y-axis lies on specified points.

Parameters

compound
[mb.Compound] The compound to move.

new_origin
[mb.Compound or like-like of size 3, default=[0, 0, 0]] Where to place the new
origin of the coordinate system.

point_on_y_axis
[mb.Compound or list-like of size 3, default=[0, 1, 0]] A point on the new
y-axis.

point_on_xy_plane
[mb.Compound or list-like of size 3, default=[0, 1, 0]] A point on the new
xy-plane.

mbuild.coordinate_transform.z_axis_transform(compound, new_origin=None,
point_on_z_axis=None,
point_on_zx_plane=None)

Move a compound such that the z-axis lies on specified points.

Parameters

compound
[mb.Compound] The compound to move.

new_origin
[mb.Compound or list-like of size 3, default=[0, 0, 0]] Where to place the new
origin of the coordinate system.

point_on_z_axis
[mb.Compound or list-like of size 3, default=[0, 0, 1]] A point on the new
z-axis.

point_on_zx_plane
[mb.Compound or list-like of size 3, default=[0, 0, 1]] A point on the new
xz-plane.

mbuild.compound.Compound.translate(self , by)
Translate the Compound by a vector.

81

Parameters

by
[np.ndarray, shape=(3,), dtype=float]

mbuild.compound.Compound.translate_to(self , pos)
Translate the Compound to a specific position.

Parameters

pos
[np.ndarray, shape=3(,), dtype=float]

mbuild.compound.Compound.rotate(self , theta, around)
Rotate Compound around an arbitrary vector.

Parameters

theta
[float] The angle by which to rotate the Compound, in radians.

around
[np.ndarray, shape=(3,), dtype=float] The vector about which to rotate the
Compound.

mbuild.compound.Compound.spin(self , theta, around, anchor=None)
Rotate Compound in place around an arbitrary vector.

Parameters

theta
[float] The angle by which to rotate the Compound, in radians.

around
[np.ndarray, shape=(3,), dtype=float] The axis about which to spin the Com-
pound.

anchor
[mb.Compound, optional, default=None (self)] Anchor compound/particle to
perform spinning. If the anchor is not a particle, the spin will be around the
center of the anchor Compound.

1.10 Recipes

Monolayer

class mbuild.lib.recipes.monolayer.Monolayer(surface, chains, fractions=None, backfill=None,
pattern=None, tile_x=1, tile_y=1, **kwargs)

A general monolayer recipe.

Parameters

surface
[mb.Compound] Surface on which the monolayer will be built.

chains
[list of mb.Compounds] The chains to be replicated and attached to the surface.

fractions
[list of floats] The fractions of the pattern to be allocated to each chain.

82

backfill
[list of mb.Compound, optional, default=None] If there are fewer chains than
there are ports on the surface, copies of backfill will be used to fill the remaining
ports.

pattern
[mb.Pattern, optional, default=mb.Random2DPattern] An array of planar
binding locations. If not provided, the entire surface will be filled with chain.

tile_x
[int, optional, default=1] Number of times to replicate substrate in x-direction.

tile_y
[int, optional, default=1] Number of times to replicate substrate in y-direction.

Polymer

class mbuild.lib.recipes.polymer.Polymer(monomers=None, end_groups=None)
Connect one or more components in a specified sequence.

Notes

There are two different approaches to using the Polymer class to create polymers

1) Pass in already created Compound instances to the monomers and end_groups parameters
when creating a Polymer instance:

You can then call the Polymer.build() method to create a polymer. This approach
can be used if the compounds being passed into the Polymer instance already have
the ports created, and correct atomic structure to allow for the monomer-monomer
and monomer-end group bonds. These compounds are used as-is when creating the
polymer chain.

Attributes

monomers
[list of mbuild.Compounds] Get the monomers.

end_groups
[list of mbuild.Compounds] Get the end groups.

Methods

add_monomer(monomer, in-
dices, separation, port_labels,
orientation, replace)

Use to add a monomer compound to Polymer.monomers

add_end_groups(compound,
index, separation, orientation,
replace)

Use to add an end group compound to Poly-
mer.end_groups

build(n, sequence) Use to create a single polymer compound. This method
uses the compounds created by calling the add_monomer
and add_end_group methods.

83

add_end_groups(compound, index, separation=None, orientation=None, replace=True, label='head',
duplicate=True)

Add an mBuild compound to self.end_groups.

End groups will be used to cap the polymer. Call this function for each unique end group
compound to be used in the polymer, or call it once with duplicate=True if the head and
tail end groups are the same.

Parameters

compound
[mbuild.Compound] A compound of the end group structure

index
[int] The particle index in compound that represents the bonding site between
the end group and polymer. You can specify the index of a particle that will
be replaced by the polymer bond or that acts as the bonding site. See the
replace parameter notes.

separation
[float] The bond length (units nm) desired between monomer and end-group.

orientation
[array-like, shape=(3,), default None] Vector along which to orient the port
If replace=True and orientation=None, the orientation of the bond between the
particle being removed and the anchor particle is used. Recommended be-
havior is to leave orientation set to None if you are using replace=True.

replace
[Bool, default True] If True, then the particle identified by index will be re-
moved and ports are added to the particle it was initially bonded to. Only
use replace=True in the case that index points to a hydrogen atom bonded
to the desired bonding site particle. If False, then the particle identified by
index will have a port added and no particle is removed from the end group
compound.

label
[str, default ‘head’] Whether to add the end group to the ‘head or ‘tail’ of the
polymer. If duplicate=True, label is ignored.

duplicate
[Bool, default True] If True, then compound is duplicated and added to Poly-
mer.end_groups twice. Set to True if you want the same end group compound
at the head and tail of the polymer. If that’s the case, you only need to call
add_end_groups() once. If False, compound is not duplicated and only one in-
stance of the end group structure is added to Polymer.end_groups. You can
call add_end_groups() a second time to add another end group.

Notes

Refer to the docstring notes of the add_monomer() function for an explanation of the correct
way to use the replace and index parameters.

add_monomer(compound, indices, separation=None, orientation=[None, None], replace=True)
Add a Compound to self.monomers.

The monomers will be used to build the polymer. Call this function for each unique
monomer to be used in the polymer.

Parameters

84

compound
[mbuild.Compound] A compound of the individual monomer

indices
[list of int of length 2] The particle indices of compound that represent the
polymer bonding sites. You can specify the indices of particles that will be
replaced by the polymer bond, or indices of particles that act as the bonding
sites. See the ‘replace’ parameter notes.

separation
[float, units nm] The bond length desired at the monomer-monomer bonding
site. (separation / 2) is used to set the length of each port

orientation
[list of array-like, shape=(3,) of length 2,] default=[None, None] Vector along
which to orient the port If replace = True, and orientation = None, the orien-
tation of the bond between the particle being removed and the anchor particle
is used. Recommended behavior is to leave orientation set to None if you are
using replace=True.

replace
[Bool, required, default=True] If True, then the particles identified by bond-
ing_indices will be removed and ports are added to the particles they were
initially bonded to. Only use replace=True in the case that bonding_indices
point to hydrogen atoms bonded to the desired monomer-monomer bond-
ing site particles. If False, then the particles identified by bonding_indices
will have ports added, and no particles are removed from the monomer com-
pound.

Notes

Using the ‘replace’ and ‘indices’ parameters:

The atoms in an mbuild compound can be identified by their index numbers. For example,
an ethane compound with the index number next to each atom:

H(4) H(7)
| |

H(3) - C(0) - C(1) - H(6)
| |

H(2) H(5)

If replace=True, then this function removes the hydrogen atoms that are occupying where
the C-C bond should occur between monomers. It is required that you specify which atoms
should be removed which is achieved by the indices parameter.

In this example, you would remove H(2) and H(7) by indicating indices [2, 7]. The resulting
structure of the polymer can vary wildly depending on your choice for indices, so you will
have to test out different combinations to find the two that result in the desired structure.

build(n, sequence='A', add_hydrogens=True)
Connect one or more components in a specified sequence.

Uses the compounds that are stored in Polymer.monomers and Polymer.end_groups.

If no capping method is used, i.e., if add_hydrogens == False and Polymer.end_groups
is None, then the ports are exposed as, Polymer.head_port and Polymer.tail_port.

Parameters

85

n
[int] The number of times to replicate the sequence.

sequence
[str, optional, default ‘A’] A string of characters where each unique character
represents one repetition of a monomer. Characters in sequence are assigned
to monomers in the order they appear in Polymer.monomers. The characters
in sequence are assigned to the compounds in the in the order that they ap-
pear in the Polymer.monomers list. For example, ‘AB’ where ‘A’corresponds
to the first compound added to Polymer.monomers and ‘B’ to the second
compound.

add_hydrogens
[bool, default True] If True and an end_groups compound is None, then the
head or tail of the polymer will be capped off with hydrogen atoms. If end
group compounds exist, then they will be used. If False and an end group
compound is None, then the head or tail port will be exposed in the polymer.

periodic_axis
[str, default None] If not None and an end_groups compound is None, then
the head and tail will be forced into an overlap with a periodicity along the
axis (default=”z”) specified. See mbuild.lib.recipes.polymer.Polymer.
create_periodic_bond() for more details. If end group compounds exist,
then there will be a warning. However add_hydrogens will simply be over-
written. If None, end_groups compound is None, and add_hydrogens is
False then the head or tail port will be exposed in the polymer.

create_periodic_bond(axis='z')
Align and bond the end points of a polymer along an axis.

Parameters

axis
[str, default=”z”] Axis along which to orient the polymer taken as the line
connected the free ports of the end group. May be “x”, “y”, or “z”.

property end_groups
Get the end groups.

end_groups cannot be set. Use add_end_group method instead.

property monomers
Get the monomers.

monomers cannot be set. Use add_monomer method instead.

Tiled Compound

class mbuild.lib.recipes.tiled_compound.TiledCompound(tile, n_tiles, name=None, **kwargs)
Replicates a Compound in any cartesian direction(s).

Correctly updates connectivity while respecting periodic boundary conditions.

Parameters

tile
[mb.Compound] The Compound to be replicated.

n_tiles
[array-like, shape=(3,), dtype=int, optional, default=(1, 1, 1)] Number of times
to replicate tile in the x, y and z-directions.

86

name
[str, optional, default=tile.name] Descriptive string for the compound.

Silica Interface

class mbuild.lib.recipes.silica_interface.SilicaInterface(bulk_silica, tile_x=1, tile_y=1,
thickness=1.0, seed=12345)

A recipe for creating an interface from bulk silica.

Carves silica interface from bulk, adjusts to a reactive surface site density of 5.0 sites/nm^2

(agreeing with experimental results, see Zhuravlev 2000) by creating Si-O-Si bridges, and yields
a 2:1 Si:O ratio (excluding the reactive surface sites).

Parameters

bulk_silica
[Compound] Bulk silica from which to cleave an interface

tile_x
[int, optional, default=1] Number of times to replicate bulk silica in x-direction

tile_y
[int, optional, default=1] Number of times to replicate bulk silica in y-direction

thickness
[float, optional, default=1.0] Thickness of the slab to carve from the silica bulk.
(in nm; not including oxygen layers on the top and bottom of the surface)

References

[1], [2]

Packing

mBuild packing module: a wrapper for PACKMOL.

http://leandro.iqm.unicamp.br/m3g/packmol/home.shtml

mbuild.packing.fill_box(compound, n_compounds=None, box=None, density=None, overlap=0.2,
seed=12345, sidemax=100.0, edge=0.2, compound_ratio=None,
aspect_ratio=None, fix_orientation=False, temp_file=None,
update_port_locations=False)

Fill a box with an mbuild.compound or Compound s using PACKMOL.

fill_box takes a single Compound or a list of Compound s and returns a Compound that has been
filled to specification by PACKMOL.

When filling a system, two arguments of n_compounds , box , and density must be specified.

If n_compounds and box are not None, the specified number of compounds will be inserted into
a box of the specified size.

If n_compounds and density are not None, the corresponding box size will be calculated internally.
In this case, n_compounds must be an int and not a list of int.

If box and density are not None, the corresponding number of compounds will be calculated
internally.

For the cases in which box is not specified but generated internally, the default behavior is to
calculate a cubic box. Optionally, aspect_ratio can be passed to generate a non-cubic box.

87

http://leandro.iqm.unicamp.br/m3g/packmol/home.shtml

Parameters

compound
[mb.Compound or list of mb.Compound] Compound or list of compounds to
fill in box.

n_compounds
[int or list of int] Number of compounds to be filled in box.

box
[mb.Box] Box to be filled by compounds.

density
[float, units kg/m3 , default=None] Target density for the system in macroscale
units. If not None, one of n_compounds or box , but not both, must be specified.

overlap
[float, units nm, default=0.2] Minimum separation between atoms of different
molecules.

seed
[int, default=12345] Random seed to be passed to PACKMOL.

sidemax
[float, optional, default=100.0] Needed to build an initial approximation of the
molecule distribution in PACKMOL. All system coordinates must fit with in
+/- sidemax, so increase sidemax accordingly to your final box size.

edge
[float, units nm, default=0.2] Buffer at the edge of the box to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.

compound_ratio
[list, default=None] Ratio of number of each compound to be put in box. Only
used in the case of density and box having been specified, n_compounds not
specified, and more than one compound .

aspect_ratio
[list of float] If a non-cubic box is desired, the ratio of box lengths in the x, y,
and z directions.

fix_orientation
[bool or list of bools] Specify that compounds should not be rotated when
filling the box, default=False.

temp_file
[str, default=None] File name to write PACKMOL raw output to.

update_port_locations
[bool, default=False] After packing, port locations can be updated, but since
compounds can be rotated, port orientation may be incorrect.

Returns

filled
[mb.Compound]

mbuild.packing.fill_region(compound, n_compounds, region, overlap=0.2, bounds=None,
seed=12345, sidemax=100.0, edge=0.2, fix_orientation=False,
temp_file=None, update_port_locations=False)

Fill a region of a box with mbuild.Compound (s) using PACKMOL.

Parameters

88

compound
[mb.Compound or list of mb.Compound] Compound or list of compounds to
fill in region.

n_compounds
[int or list of ints] Number of compounds to be put in region.

region
[mb.Box or list of mb.Box] Region to be filled by compounds.

overlap
[float, units nm, default=0.2] Minimum separation between atoms of different
molecules.

seed
[int, default=12345] Random seed to be passed to PACKMOL.

sidemax
[float, optional, default=100.0] Needed to build an initial approximation of the
molecule distribution in PACKMOL. All system coordinates must fit with in
+/- sidemax, so increase sidemax accordingly to your final box size.

edge
[float, units nm, default=0.2] Buffer at the edge of the region to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.

fix_orientation
[bool or list of bools] Specify that compounds should not be rotated when
filling the box, default=False.

bounds
[list-like of list-likes of floats [[min_x, min_y, min_z, max_x, max_y, max_z],
. . .], units nm, default=None] Bounding(s) within box to pack compound(s).
To pack within a bounding area that is not the full extent of the region, bounds
are required. Each item of compound must have its own bound specified. Use
None to indicate a given compound is not bounded, e.g. [[0., 0., 1., 2., 2., 2.],
None] to bound only the first element of compound and not the second.

temp_file
[str, default=None] File name to write PACKMOL raw output to.

update_port_locations
[bool, default=False] After packing, port locations can be updated, but since
compounds can be rotated, port orientation may be incorrect.

Returns

filled
[mb.Compound]

If using mulitple regions and compounds, the nth value in each list are used
in order.
For example, the third compound will be put in the third region using the
third value in n_compounds.

mbuild.packing.fill_sphere(compound, sphere, n_compounds=None, density=None, overlap=0.2,
seed=12345, sidemax=100.0, edge=0.2, compound_ratio=None,
fix_orientation=False, temp_file=None, update_port_locations=False)

Fill a sphere with a compound using PACKMOL.

One argument of n_compounds and density must be specified.

89

If n_compounds is not None, the specified number of n_compounds will be inserted into a sphere
of the specified size.

If density is not None, the corresponding number of compounds will be calculated internally.

Parameters

compound
[mb.Compound or list of mb.Compound] Compound or list of compounds to
be put in box.

sphere
[list, units nm] Sphere coordinates in the form [x_center, y_center, z_center,
radius]

n_compounds
[int or list of int] Number of compounds to be put in box.

density
[float, units kg/m3, default=None] Target density for the sphere in macroscale
units.

overlap
[float, units nm, default=0.2] Minimum separation between atoms of different
molecules.

seed
[int, default=12345] Random seed to be passed to PACKMOL.

sidemax
[float, optional, default=100.0] Needed to build an initial approximation of the
molecule distribution in PACKMOL. All system coordinates must fit with in
+/- sidemax, so increase sidemax accordingly to your final sphere size

edge
[float, units nm, default=0.2] Buffer at the edge of the sphere to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.

compound_ratio
[list, default=None] Ratio of number of each compound to be put in sphere.
Only used in the case of density having been specified, n_compounds not speci-
fied, and more than one compound.

fix_orientation
[bool or list of bools] Specify that compounds should not be rotated when
filling the sphere, default=False.

temp_file
[str, default=None] File name to write PACKMOL raw output to.

update_port_locations
[bool, default=False] After packing, port locations can be updated, but since
compounds can be rotated, port orientation may be incorrect.

Returns

filled
[mb.Compound]

mbuild.packing.solvate(solute, solvent, n_solvent, box, overlap=0.2, seed=12345, sidemax=100.0,
edge=0.2, fix_orientation=False, temp_file=None, update_port_locations=False,
center_solute=True)

Solvate a compound in a box of solvent using PACKMOL.

90

Parameters

solute
[mb.Compound] Compound to be placed in a box and solvated.

solvent
[mb.Compound] Compound to solvate the box.

n_solvent
[int] Number of solvents to be put in box.

box
[mb.Box] Box to be filled by compounds.

overlap
[float, units nm, default=0.2] Minimum separation between atoms of different
molecules.

seed
[int, default=12345] Random seed to be passed to PACKMOL.

sidemax
[float, optional, default=100.0] Needed to build an initial approximation of the
molecule distribution in PACKMOL. All system coordinates must fit with in
+/- sidemax, so increase sidemax accordingly to your final box size

edge
[float, units nm, default=0.2] Buffer at the edge of the box to not place
molecules. This is necessary in some systems because PACKMOL does not
account for periodic boundary conditions in its optimization.

fix_orientation
[bool] Specify if solvent should not be rotated when filling box, default=False.

temp_file
[str, default=None] File name to write PACKMOL raw output to.

update_port_locations
[bool, default=False] After packing, port locations can be updated, but since
compounds can be rotated, port orientation may be incorrect.

center_solute
[bool, optional, default=True] Move solute center of mass to the center of the
mb.Box used.

Returns

solvated
[mb.Compound]

Pattern

mBuild pattern module.

class mbuild.pattern.DiskPattern(n, **kwargs)
Generate N evenly distributed points on the unit circle along z = 0.

Disk is centered at the origin. Algorithm based on Vogel’s method.

Code by Alexandre Devert: http://blog.marmakoide.org/?p=1

class mbuild.pattern.Grid2DPattern(n, m, **kwargs)
Generate a 2D grid (n x m) of points along z = 0.

91

http://blog.marmakoide.org/?p=1

Notes

Points span [0,1) along x and y axes

Attributes

n
[int] Number of grid rows

m
[int] Number of grid columns

class mbuild.pattern.Grid3DPattern(n, m, l, **kwargs)
Generate a 3D grid (n x m x l) of points.

Notes

Points span [0,1) along x, y, and z axes

Attributes

n
[int] Number of grid rows

m
[int] Number of grid columns

l
[int] Number of grid aisles

class mbuild.pattern.Pattern(points, orientations=None, scale=None, **kwargs)
A superclass for molecules spatial Patterns.

Patterns refer to how molecules are arranged either in a box (volume) or 2-D surface. This class
could serve as a superclass for different molecules patterns

Attributes

points
[array or np.array] Positions of molecules in surface or space

orientations
[dict, optional, default=None] Orientations of ports

scale
[float, optional, default=None] Scale the points in the Pattern.

apply(compound, orientation='', compound_port='')
Arrange copies of a Compound as specified by the Pattern.

Parameters

compound
[mb.Compound] mb.Compound to be applied new pattern

orientation
[dict, optional, default=”] New orientations for ports in compound

compound_port
[list, optional, default=None] Ports to be applied new orientations

Returns

compound
[mb.Compound] mb.Compound with applied pattern

92

apply_to_compound(guest, guest_port_name='down', host=None, backfill=None,
backfill_port_name='up', scale=True)

Attach copies of a guest Compound to Ports on a host Compound.

Parameters

guest
[mb.Compound] The Compound prototype to be applied to the host Com-
pound

guest_port_name
[str, optional, default=’down’] The name of the port located on guest to attach
to the host

host
[mb.Compound, optional, default=None] A Compound with available ports
to add copies of guest to

backfill
[mb.Compound, optional, default=None] A Compound to add to the remain-
ing available ports on host after clones of guest have been added for each point
in the pattern

backfill_port_name
[str, optional, default=’up’] The name of the port located on backfill to attach
to the host

scale
[bool, optional, default=True] Scale the points in the pattern to the lengths of
the host’s boundingbox and shift them by the hosts mins

Returns

guests
[list of mb.Compound] List of inserted guest compounds on host compound

backfills
[list of mb.Compound] List of inserted backfill compounds on host com-
pound

scale(by)
Scale the points in the Pattern.

Parameters

by
[float or np.ndarray, shape=(3,)] The factor to scale by. If a scalar, scale all
directions isotropically. If np.ndarray, scale each direction independently

class mbuild.pattern.Random2DPattern(n, seed=None, **kwargs)
Generate n random points on a 2D grid along z = 0.

Attributes

n
[int] Number of points to generate

seed
[int] Seed for random number generation

class mbuild.pattern.Random3DPattern(n, seed=None, **kwargs)
Generate n random points on a 3D grid.

Attributes

93

n
[int] Number of points to generate

seed
[int] Seed for random number generation

class mbuild.pattern.SpherePattern(n, **kwargs)
Generate N evenly distributed points on the unit sphere.

Sphere is centered at the origin. Alrgorithm based on the ‘Golden Spiral’.

Code by Chris Colbert from the numpy-discussion list: http://mail.scipy.org/pipermail/
numpy-discussion/2009-July/043811.html

class mbuild.pattern.Triangle2DPattern(n, m, shift='n', shift_by=0.5, **kwargs)
Generate a 2D triangle (n x m) of points along z = 0.

Generate a square grid of dimensions n by m, then shifts points accordingly to generate a trian-
gular arrangement. shift=’n’ means shifting occurs in the x direction, where the code shift every
other row in the range specified by ‘m’, and vice versa for shift=’m’. By default, shifting will be
half the distance betwen neighboring points in the direction of shifting.

Notes

Points span [0,1) along x and y axes. This code will allow patterns to be generated that are only
periodic in one direction. To generate a periodic pattern, ‘m’ should be even when shift=’n’ and
vice versa.

Attributes

n
[int] Number of points along x axis

m
[int] Number of points along y axis

shift
[str, optional, default=”n”] Allow user to choose the pattern to be shifted by
“n” or “m”

shift_by
[0 <= float <= 1, optional, default=0.5] Normalized distance to be shift the n or
m rows, with value between 0 and 1. The value should be the relative distance
between two consecutive points defined in shift. shift_by value of 0 will return
grid pattern.

1.11 Units

mBuild automatically performs unit conversions in its reader and writer functions. When working
with an mbuild.Compound , mBuild uses the following units:

Quantity Units

distance nm
angle radians*

* mbuild.Lattice and mbuild.Box use degrees.

94

http://mail.scipy.org/pipermail/numpy-discussion/2009-July/043811.html
http://mail.scipy.org/pipermail/numpy-discussion/2009-July/043811.html

See also foyer unit documentation73 and ele documentation74.

1.12 Citing mBuild

If you use mBuild for your research, please cite our paper75:

ACS

Klein, C.; Sallai, J.; Jones, T. J.; Iacovella, C. R.; McCabe, C.; Cummings, P. T. A Hierarchi-
cal, Component Based Approach to Screening Properties of Soft Matter. In Foundations of
Molecular Modeling and Simulation. Molecular Modeling and Simulation (Applications and Per-
spectives); Snurr, R. Q., Adjiman, C. S., Kofke, D. A., Eds.; Springer, Singapore, 2016; pp
79-92.

BibTeX

@Inbook{Klein2016mBuild,
author = "Klein, Christoph and Sallai, János and Jones, Trevor J. and␣

↪→Iacovella, Christopher R. and McCabe, Clare and Cummings, Peter T.",
editor = "Snurr, Randall Q and Adjiman, Claire S. and Kofke, David A.",
title = "A Hierarchical, Component Based Approach to Screening␣

↪→Properties of Soft Matter",
bookTitle = "Foundations of Molecular Modeling and Simulation: Select␣

↪→Papers from FOMMS 2015",
year = "2016",
publisher = "Springer Singapore",
address = "Singapore",
pages = "79--92",
isbn = "978-981-10-1128-3",
doi = "10.1007/978-981-10-1128-3_5",
url = "https://doi.org/10.1007/978-981-10-1128-3_5"

}

Download as BibTeX or RIS

1.13 Older Documentation

Up until mBuild Version 0.10.476, the documentation is available as pdf files. Please use the following
links to download the documentation as a pdf manual:

• Mbuild Version 0.10.477: Download Here78

• Mbuild Version 0.10.379: Download Here80

• Mbuild Version 0.10.181: Download Here82

• Mbuild Version 0.9.383: Download Here84

73 https://foyer.mosdef.org/en/stable/units.html
74 https://ele-ment.readthedocs.io/en/latest/
75 http://doi.org/10.1007%2F978-981-10-1128-3_5

76 https://github.com/mosdef-hub/mbuild/releases/tag/0.10.4
77 https://github.com/mosdef-hub/mbuild/releases/tag/0.10.4
78 https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.10.4.pdf
79 https://github.com/mosdef-hub/mbuild/releases/tag/0.10.3
80 https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.10.3.pdf
81 https://github.com/mosdef-hub/mbuild/releases/tag/0.10.1
82 https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.10.1.pdf
83 https://github.com/mosdef-hub/mbuild/releases/tag/0.9.3
84 https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.9.3.pdf

95

https://foyer.mosdef.org/en/stable/units.html
https://ele-ment.readthedocs.io/en/latest/
http://doi.org/10.1007%2F978-981-10-1128-3_5
https://github.com/mosdef-hub/mbuild/releases/tag/0.10.4
https://github.com/mosdef-hub/mbuild/releases/tag/0.10.4
https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.10.4.pdf
https://github.com/mosdef-hub/mbuild/releases/tag/0.10.3
https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.10.3.pdf
https://github.com/mosdef-hub/mbuild/releases/tag/0.10.1
https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.10.1.pdf
https://github.com/mosdef-hub/mbuild/releases/tag/0.9.3
https://github.com/mosdef-hub/mosdef-hub.github.io/raw/master/old_docs/mbuild.0.9.3.pdf

References

[Eastman2013] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. A.
Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M.
R. Shirts, and V. S. Pande. “OpenMM 4: A Reusable, Extensible, Hardware Independent
Library for High Performance Molecular Simulation.” J. Chem. Theor. Comput. 9(1): 461-
469. (2013).

[OBoyle2011] O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R.
“Open Babel: An open chemical toolbox.” (2011) J. Cheminf. 3, 33

[OpenBabel] Open Babel, version X.X.X http://openbabel.org, (installed Month Year)

[Halgren1996a] T.A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization,
and performance of MMFF94.” (1996) J. Comput. Chem. 17, 490-519

[Halgren1996b] T.A. Halgren, “Merck molecular force field. II. MMFF94 van der Waals and electro-
static parameters for intermolecular interactions.” (1996) J. Comput. Chem. 17, 520-552

[Halgren1996c] T.A. Halgren, “Merck molecular force field. III. Molecular geometries and vibrational
frequencies for MMFF94.” (1996) J. Comput. Chem. 17, 553-586

[Halgren1996d] T.A. Halgren and R.B. Nachbar, “Merck molecular force field. IV. Conformational
energies and geometries for MMFF94.” (1996) J. Comput. Chem. 17, 587-615

[Halgren1996e] T.A. Halgren, “Merck molecular force field. V. Extension of MMFF94 using experimen-
tal data, additional computational data, and empirical rules.” (1996) J. Comput. Chem. 17,
616-641

[Halgren1999] T.A. Halgren, “MMFF VI. MMFF94s option for energy minimization studies.” (1999) J.
Comput. Chem. 20, 720-729

[Rappe1992] Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. III, Skiff, W.M. “UFF, a full
periodic table force field for molecular mechanics and molecular dynamics simulations.”
(1992) J. Am. Chem. Soc. 114, 10024-10039

[Wang2004] Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A. “Development and testing
of a general AMBER force field” (2004) J. Comput. Chem. 25, 1157-1174

[Hassinen2001] T. Hassinen and M. Perakyla, “New energy terms for reduced protein models imple-
mented in an off-lattice force field” (2001) J. Comput. Chem. 22, 1229-1242

[1] Hartkamp, R., Siboulet, B., Dufreche, J.-F., Boasne, B. “Ion-specific adsorption and elec-
troosmosis in charged amorphous porous silica.” (2015) Phys. Chem. Chem. Phys. 17,
24683-24695

[2] L.T. Zhuravlev, “The surface chemistry of amorphous silica. Zhuravlev model.” (2000)
Colloids Surf., A. 10, 1-38

96

http://openbabel.org

Python Module Index

m
mbuild.conversion.load, 79

mbuild.formats.cassandramcf, 14

mbuild.formats.gsdwriter, 14

mbuild.formats.hoomd_forcefield, 15

mbuild.formats.hoomd_simulation, 17

mbuild.formats.hoomd_snapshot, 18

mbuild.formats.lammpsdata, 20

mbuild.lattice.load_cif, 80

mbuild.packing, 87

mbuild.pattern, 91

97

	mBuild is a part of the MoSDeF ecosystem
	Example System
	Installation
	Installation
	Install with conda
	Install an editable version from source
	Install pre-commit
	Supported Python Versions
	Testing your installation
	Building the documentation

	Using mBuild with Docker
	Prerequisites
	Jupyter Quick Start
	Persisting User Volumes
	Running Python scripts in the container
	Different mBuild versions
	Cleaning Up

	Quick Start
	Load files
	mol2 files
	CIF files
	Other file types

	Box
	Orthogonal Box
	Non-Orthogonal Box

	Fill Box
	All-Atom (AA) Hexane and Ethanol System
	United Atom (UA) Methane System

	Polymer

	File Writers
	Cassandra File Writers
	HOOMD-blue File Writers
	Write GSD (General Simulation Data)
	Default data file format for HOOMD-blue

	Create HOOMD-blue force field (>= 3.0)
	Create HOOMD-blue Simulation (v2.x)
	HOOMD-blue Snapshot

	LAMMPS File Writers
	Write Lammps data

	Tutorials
	Methane: Compounds and bonds
	Ethane: Reading from files, Ports and coordinate transforms
	Monolayer: Complex hierarchies, patterns, tiling and writing to files
	Point Particles: Basic system initialization
	Building a Simple Alkane
	Setting up the monomer
	Defining the polymerization class
	Using mBuild’s Polymer Class
	Building a Simple Hexane
	Using Multiple Monomers and Capping the Ends of a Polymer
	Building a System of Alkanes
	Variations

	Lattice Tutorial
	Lattice Functionality
	Lattice Data Structure Introduction
	Lattice Public Methods
	Example Lattice Systems
	Simple Cubic (SC)
	Body-centered Cubic (BCC)
	Face-centered Cubic (FCC)
	Diamond (Cubic)
	Graphene (2D)

	Recipe Development
	Entry Points
	Registering a Recipe
	Putting it all together
	Trying it Out

	Data Structures
	Compound
	Box
	Lattice
	Port

	Loading Data
	Load
	Parameters
	Returns
	Notes

	Load CIF
	Parameters
	Returns

	Coordinate Transformations
	Recipes
	Monolayer
	Polymer
	Tiled Compound
	Silica Interface
	Packing
	Pattern

	Units
	Citing mBuild
	Older Documentation

	References
	Python Module Index

