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mBuild: A hierarchical, component based molecule builder

With just a few lines of mBuild code, you can assemble reusable components into complex molecular
systems for molecular simulations.

* mBuild is designed to minimize or even eliminate the need to explicitly translate and orient
components when building systems: you simply tell it to connect two pieces!

* mBuild keeps track of the system’s topology so you don’t have to worry about manually defining
bonds when constructing chemically bonded structures from smaller components.

1 Example system

Components in dashed boxes are drawn by hand using, e.g., Avogadro® or generated elsewhere. Each
component is wrapped as a python class with user defined attachment sites, or ports. That’s the hard
part! Now mBuild can do the rest. Each component further down the hierarchy is, again, a simple
python class that describes which piece should connect to which piece.

Ultimately, complex systems structures can be created with just a line or two of code. Additionally,
this approach seamlessly exposes tunable parameters within the hierarchy so you can actually create
whole families of structures by adjusting a variable or two:

pattern = Random2DPattern(20) # A random arrangement of 20 pieces on a 2D surface.
brush_layer = BrushLayer(chain_lenth=20, pattern=pattern, tile_x=3, tile_y=2)

* https:/ /avogadro.cc


https://avogadro.cc
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2 Various sub-portions of this library may be independently distributed under different licenses. See
those files for their specific terms.

2 http:/ /opensource.org/licenses/MIT


http://opensource.org/licenses/MIT

2 Installation

2.1 Install with conda3

$ conda install -c conda-forge -c omnia mbuild

Alternatively you can add all the required channels to your .condarc after which you can simply
install without specifying the channels:

$ conda config --add channels omnia
$ conda config --add channels conda-forge
$ conda install mbuild

Note: The order in which channels are added matters: conda-forge should be the highest priority
as a result of being added last. In your . condarc file, it should be listed first.

Note: The MDTraj website* makes a nice case for using Python and in particular the Anaconda
scientific python distribution> to manage your numerical and scientific Python packages.

2.2 Install with pip®

$ pip install mbuild

Note: PACKMOLY is not available on pip but can be installed from source or via conda.

2.3 Install an editable version from source

$ git clone https://github.com/mosdef-hub/mbuild
$ cd mbuild
$ pip install -e .

To make your life easier, we recommend that you use a pre-packaged Python distribution like Contin-
uum’s Anaconda® in order to get all of the dependencies.

2.4 Supported Python Versions

Python 3.6, 3.7 and 3.8 are officially supported, including testing during development and packaging.
Support for Python 2.7 has been dropped as of August 6, 2019. Other Python versions, such as 3.9 and
3.5 and older, may successfully build and function but no guarantee is made.

3 https:/ /repo.anaconda.com/miniconda/

4 http:/ /mdtraj.org/1.9.3/new_to_python.html

5 https:/ /www.anaconda.com/products/individual
6 https:/ /pypi.org/project/pip/

7 http:/ /m3g.igm.unicamp.br /packmol/

8 https:/ /www.anaconda.com/products/individual /


http://mdtraj.org/1.9.3/new_to_python.html
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
http://m3g.iqm.unicamp.br/packmol/
https://www.anaconda.com/products/individual/
https://www.anaconda.com/products/individual/

2.5 Testing your installation

mBuild uses py.test for unit testing. To run them simply type run the following while in the base
directory:

$ conda install pytest
$ py.test -v

3 Tutorials

The following section was generated from docs/tutorials/tutorial_methane.ipynb ......... ..o,

3.1 Methane: Compounds and bonds

Note: mBuild expects all distance units to be in nanometers.

The primary building block in mBuild is a Compound. Anything you construct will inherit from this
class. Let’s start with some basic imports and initialization:

import mbuild as mb

class Methane (mb.Compound) :
def _init__(self):
super (Methane, self).__init__()

Any Compound can contain other Compounds which can be added using its add () method. Compounds
at the bottom of such a hierarchy are referred to as Particles. Note however, that this is purely
semantic in mBuild to help clearly designate the bottom of a hierarchy.

import mbuild as mb

class Methane (mb.Compound) :
def __init__(self):
super (Methane, self).__init__Q)
carbon = mb.Particle(name='C")
self.add(carbon, label='C[$]"')

hydrogen = mb.Particle(name='H', pos=[0.11, 0, 0])
self.add(hydrogen, label='HC[$]"')

By default a created Compound/Particle will be placed at 0, O, 0 as indicated by its pos attribute.
The Particle objects contained in a Compound, the bottoms of the hierarchy, can be referenced via the
particles method which returns a generator of all Particle objects contained below the Compound
in the hierarchy.

Note: All positions in mBuild are stored in nanometers.

Any part added to a Compound can be given an optional, descriptive string label. If the label ends with
the characters [$], a list will be created in the labels. Any subsequent parts added to the Compound
with the same label prefix will be appended to the list. In the example above, we’ve labeled the
hydrogen as HC[$]. So this first part, with the label prefix HC, is now referenceable via self ['HC'] [0].
The next part added with the label HC[$] will be referenceable via self ['HC'] [1].

Now let’s use these styles of referencing to connect the carbon to the hydrogen. Note that for typical
use cases, you will almost never have to explicitly define a bond when using mBuild - this is just to
show you what’s going on under the hood:



import mbuild as mb

class Methane (mb.Compound) :
def init (self):
super (Methane, self).__init__Q)
carbon = mb.Particle(name='C')
self.add(carbon, label='C[$]"')

hydrogen = mb.Particle(name='H', pos=[0.11, 0, 0])
self.add(hydrogen, label='HC[$]")

self.add_bond((self[0], self['HC'][0]))
As you can see, the carbon is placed in the zero index of self. The hydrogen could be referenced via
self [1] but since we gave it a fancy label, it’s also referenceable via self ['HC'] [0].

Alright now that we’ve got the basics, let’s finish building our Methane and take a look at it:

import mbuild as mb

class Methane(mb.Compound):
def __init__(self):
super (Methane, self).__init__Q)
carbon = mb.Particle(name='C"')
self.add(carbon, label='C[$]"')

hydrogen = mb.Particle(name='H', pos=[0.1, 0, -0.07])
self.add(hydrogen, label='HC[$]')

self.add_bond((self[0], self['HC'][0]))

self.add(mb.Particle(name='H', pos=[-0.1, 0, -0.07]), label="HC[$]')
self.add(mb.Particle(name='H', pos=[0, 0.1, 0.07]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0, -0.1, 0.07]), label='HC[$]')

self.add_bond((self[0], self['HC'][1]))
self.add_bond((self[0], self['HC'][2]))
self.add_bond((self[0], self['HC'][3]))

methane = Methane()
methane.visualize()

# Save to .mol2
methane.save('methane.mol2',overwrite=True)

The following section was generated from docs/tutorials/tutorial_ethane.ipynb ..........ooiiiiiiiiiiiiii i

3.2 Ethane: Reading from files, Ports and coordinate transforms

Note: mBuild expects all distance units to be in nanometers.

In this example, we’ll cover reading molecular components from files, introduce the concept of Ports
and start using some coordinate transforms.

First, we need to import the mbuild package:

import mbuild as mb



As you probably noticed while creating your methane molecule in the last tutorial, manually adding
Particles and Bonds to a Compound is a bit cumbersome. The easiest way to create small, reusable
components, such as methyls, amines or monomers, is to hand draw them using software like Avo-
gadro? and export them as either a .pdb or .mol2 file (the file should contain connectivity information).

Let’s start by reading a methyl group from a . pdb file:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
ch3.visualize()

Now let’s use our first coordinate transform to center the methyl at its carbon atom:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
mb.translate(ch3, -ch3[0].pos) # Move carbon to origin.

Now we have a methyl group loaded up and centered. In order to connect Compounds in mBuild, we
make use of a special type of Compound: the Port. A Port is a Compound with two sets of four “ghost”
Particles. In addition Ports have an anchor attribute which typically points to a particle that the
Port should be associated with. In our methyl group, the Port should be anchored to the carbon
atom so that we can now form bonds to this carbon:

import mbuild as mb

ch3 = mb.load('ch3.pdb')
mb.translate(ch3, -ch3[0].pos) # Move carbon to origin.

port = mb.Port(anchor=ch3[0])
ch3.add(port, label='up')

# Place the port at approximately half a C-C bond length.
mb.translate(ch3['up'], [0, -0.07, 0])

By default, Ports are never output from the mBuild structure. However, it can be useful to look at a
molecule with the Ports to check your work as you go:

ch3.visualize (show_ports=True)

Now we wrap the methyl group into a python class, so that we can reuse it as a component to build
more complex molecules later.

import mbuild as mb

class CH3(mb.Compound) :
def init (self):
super (CH3, self).__init__()

mb.load('ch3.pdb', compound=self)
mb.translate(self, -self[0].pos) # Move carbon to origin.

port = mb.Port(anchor=self[0])

self.add(port, label='up')

# Place the port at approximately half a C-C bond length.
mb.translate(self['up'], [0, -0.07, 0])

9 http:/ /avogadro.cc/wiki/Main_Page
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When two Ports are connected, they are forced to overlap in space and their parent Compounds are
rotated and translated by the same amount.

Note: If we tried to connect two of our methyls right now using only one set of four ghost particles, not
only would the Ports overlap perfectly, but the carbons and hydrogens would also perfectly overlap -
the 4 ghost atoms in the Port are arranged identically with respect to the other atoms. For example, if
a Port and its direction is indicated by “<-”, forcing the port in <-CH3 to overlap with <-CH3 would
just look like <-CH3 (perfectly overlapping atoms).

To solve this problem, every port contains a second set of 4 ghost atoms pointing in the opposite
direction. When two Compounds are connected, the port that places the anchor atoms the farthest
away from each other is chosen automatically to prevent this overlap scenario.

When <->CH3 and <->CH3 are forced to overlap, the CH3<->CH3 is automatically chosen.

Now the fun part: stick ‘em together to create an ethane:

ethane = mb.Compound ()

ethane.add(CH3(), label="methyl 1")

ethane.add (CH3(), label="methyl 2'")

mb.force_overlap(move_this=ethane['methyl 1'],
from_positions=ethane['methyl 1']['up'],
to_positions=ethane['methyl 2']1['up'])

Above, the force_overlap() function takes a Compound and then rotates and translates it such that
two other Compounds overlap. Typically, as in this case, those two other Compounds are Ports - in our
case, methyll['up'] and methyl2['up'].

ethane.visualize()

ethane.visualize (show_ports=True)

Similarly, if we want to make ethane a reusable component, we need to wrap it into a python class.

import mbuild as mb

class Ethane (mb.Compound) :
def _init__(self):
super (Ethane, self).__init__Q)

self.add(CH3(), label="methyl 1")

self.add(CH3(), label="methyl 2")

mb. force_overlap(move_this=self['methyl 1'],
from_positions=self['methyl 1']J['up'],
to_positions=self['methyl 2']1['up'])

ethane = Ethane()
ethane.visualize()

# Save to .mol2
ethane.save('ethane.mol2', overwrite=True)

.......................................................................................... docs/tutorials/tutorial_ethane.ipynb ends here.

The following section was generated from docs/tutorials/tutorial _monolayer.iPYnb ..........oooiuiiiiiiiieiiii i,

3.3 Monolayer: Complex hierarchies, patterns, tiling and writing to files

Note: mBuild expects all distance units to be in nanometers.



In this example, we'll cover assembling more complex hierarchies of components using patterns, tiling
and how to output systems to files. To illustrate these concepts, let’s build an alkane monolayer on a
crystalline substrate.

First, let’s build our monomers and functionalized them with a silane group which we can then
attach to the substrate. The Alkane example uses the polymer tool to combine CH2 and CH3 repeat
units. You also have the option to cap the front and back of the chain or to leave a CH2 group with
a dangling port. The Silane compound is a Si(OH)2 group with two ports facing out from the
central Si. Lastly, we combine alkane with silane and add a label to AlkylSilane which points
to, silane['down']. This allows us to reference it later using AlkylSilane['down'] rather than
AlkylSilane['silane'] ['down'].

Note: In Compounds with multiple Ports, by convention, we try to label every Port successively as
‘up’, ‘down’, ‘left’, ‘right’, “front’, ‘back” which should roughly correspond to their relative orientations.
This is a bit tricky to enforce because the system is so flexible so use your best judgement and try to
be consistent! The more components we collect in our library with the same labeling conventions, the
easier it becomes to build ever more complex structures.

import mbuild as mb

from mbuild.lib.recipes import Alkane
from mbuild.lib.moieties import Silane

class AlkylSilane (mb.Compound) :
"""A silane functionalized alkane chain with one Port. """
def __init__(self, chain_length):
super (AlkylSilane, self)._ _init__()

alkane = Alkane(chain_length, cap_end=False)

self.add(alkane, 'alkane')

silane = Silane()

self.add(silane, 'silane')

mb.force_overlap(self['alkane'], self['alkane']['down'], self['silane']['up'])

# Hoist silane port to AlkylSilane level.
self.add(silane['down'], 'down', containment=False)

AlkylSilane(5) .visualize()

Now let’s create a substrate to which we can later attach our monomers:

import mbuild as mb
from mbuild.lib.surfaces import Betacristobalite

surface = Betacristobalite()
tiled_surface = mb.lib.recipes.TiledCompound(surface, n_tiles=(2, 1, 1))

Here we’ve imported a beta-cristobalite surface from our component library. The TiledCompound tool
allows you replicate any Compound in the x-, y- and z-directions by any number of times - 2, 1 and 1
for our case.

Next, let’s create our monomer and a hydrogen atom that we’ll place on unoccupied surface sites:

from mbuild.lib.atoms import H
alkylsilane = AlkylSilane(chain_length=10)
hydrogen = H()

Then we need to tell mBuild how to arrange the chains on the surface. This is accomplished with
the “pattern” tools. Every pattern is just a collection of points. There are all kinds of patterns like



spherical, 2D, regular, irregular etc. When you use the apply_pattern command, you effectively
superimpose the pattern onto the host compound, mBuild figures out what the closest ports are to the
pattern points and then attaches copies of the guest onto the binding sites identified by the pattern:

pattern = mb.Grid2DPattern(8, 8) # Evenly spaced, 2D grid of points.

# Attach chains to specified binding sites. Uther sites get a hydrogen.
chains, hydrogens = pattern.apply_to_compound (host=tiled_surface, guest=alkylsilane,,
~backfill=hydrogen)

Also note the backfill optional argument which allows you to place a different compound on any
unused ports. In this case we want to backfill with hydrogen atoms on every port without a chain.

monolayer = mb.Compound([tiled_surface, chains, hydrogens])
monolayer.visualize() # Warning: may be slow in IPython notebooks

# Save as .mol2 file
monolayer.save('monolayer.mol2', overwrite=True)

lib.recipes.monolayer.py wraps many these functions into a simple, general class for generating
the monolayers, as shown below:

from mbuild.lib.recipes import Monolayer

monolayer = Monolayer (fractions=[1.0], chains=alkylsilane, backfill=hydrogen,
pattern=mb.Grid2DPattern(n=8, m=38),
surface=surface, tile_x=2, tile_y=1)
monolayer.visualize()

...................................................................................... docs/tutorials/tutorial _monolayer.ipynb ends here.

The following section was generated from docs/tutorials/tutorial_simple LJ.IPYND .....oouuuiiiiiiiiiiiiii e eenn,

3.4 Point Particles: Basic system initialization

Note: mBuild expects all distance units to be in nanometers.

This tutorial focuses on the usage of basic system initialization operations, as applied to simple point
particle systems (i.e., generic Lennard-Jones particles rather than specific atoms).

The code below defines several point particles in a cubic arrangement. Note, the color and radius
associated with a Particle name can be set and passed to the visualize command. Colors are passed in
hex format (see http://www.color-hex.com/color/bfbfbf).

import mbuild as mb

class MonoLJ (mb.Compound) :
def _init_ (self):
super (MonoLJ, self).__init__()
1j_particlel = mb.Particle(name='LJ', pos=[0, 0, 0])
self.add(1j_particlel)

1j_particle2 = mb.Particle(name='LJ', pos=[1, 0, 0])
self.add(1j_particle2)

1j_particle3 = mb.Particle(name='LJ', pos=[0, 1, 0])

(continues on next page)

10


http://www.color-hex.com/color/bfbfbf

(continued from previous page)

self.add(1j_particle3)

1j_particle4 = mb.Particle(name='LJ', pos=[0, 0, 1])
self.add(1j_particle4)

1j_particleb = mb.Particle(name='LJ', pos=[1, 0, 1])
self.add(1j_particleb)

1j_particle6 = mb.Particle(name='LJ', pos=[1, 1, 0])
self.add(1j_particle6)

1j_particle7 = mb.Particle(name='LJ', pos=[0, 1, 1])
self.add(1j_particle7)

1j_particle8 = mb.Particle(name='LJ', pos=[1, 11)
self.add(1j_particle8)

[

monoLJ = MonoLJ()
monoLJ.visualize()

While this would work for defining a single molecule or very small system, this would not be efficient
for large systems. Instead, the clone and translate operator can be used to facilitate automation. Below,
we simply define a single prototype particle (lj_proto), which we then copy and translate about the
system.

Note, mBuild provides two different translate operations, “translate” and “translate_to”. “translate”
moves a particle by adding the vector the original position, whereas “translate_to” move a particle
to the specified location in space. Note, “translate_to” maintains the internal spatial relationships of
a collection of particles by first shifting the center of mass of the collection of particles to the origin,
then translating to the specified location. Since the lj_proto particle in this example starts at the origin,
these two commands produce identical behavior.

import mbuild as mb

class MonoLJ(mb.Compound) :
def _init_ (self):
super (MonoLJ, self).__init__()
1j_proto = mb.Particle(name='LJ', pos=[0, O, 0])

for i in range(0,2):
for j in range(0,2):
for k in range(0,2):
1j_particle = mb.clone(lj_proto)
pos = [i,j,k]
1j_particle.translate(pos)
self.add(1j_particle)

monoLJ = MonoLJ()
monoLJ.visualize()

To simplify this process, mBuild provides several build-in patterning tools, where for example,
GridzDPattern can be used to perform this same operation. Grid3DPattern generates a set of points,
from o to 1, which get stored in the variable “pattern”. We need only loop over the points in pattern,
cloning, translating, and adding to the system. Note, because Grid3DPattern defines points between o
and 1, they must be scaled based on the desired system size, i.e., pattern.scale(2).

11



import mbuild as mb

class MonoLJ(mb.Compound) :
def init (self):
super (MonoLJ, self).__init__()
1j_proto = mb.Particle(name='LJ"', pos=[0, 0, 0])

pattern = mb.Grid3DPattern(2, 2, 2)
pattern.scale(2)

for pos in pattern:
1j_particle = mb.clone(lj_proto)
1j_particle.translate(pos)
self.add(1j_particle)

monoLJ = MonoLJ()
monoLJ.visualize ()

Larger systems can therefore be easily generated by toggling the values given to Grid3DPattern. Other
patterns can also be generated using the same basic code, such as a 2D grid pattern:

import mbuild as mb

class MonoLJ(mb.Compound) :
def _init__(self):
super (MonoLJ, self).__init__Q)
1j_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern = mb.Grid2DPattern(5, 5)
pattern.scale(5)

for pos in pattern:
1j_particle = mb.clone(lj_proto)
1j_particle.translate(pos)
self.add(lj_particle)

monoLJ = MonoLJ()
monoLJ.visualize ()

Points on a sphere can be generated using SpherePattern. Points on a disk using DisKPattern, etc.

Note to show both simultaneously, we shift the x-coordinate of Particles in the sphere by -1 (ie,,
pos[o]-=1.0) and +1 for the disk (i.e, pos[o]+=1.0).

import mbuild as mb

class MonoLJ(mb.Compound) :
def _init__(self):
super (MonoLJ, self).__init__Q)
1j_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(200)
pattern_sphere.scale(0.5)

for pos in pattern_sphere:
1j_particle = mb.clone(lj_proto)
pos[0]-=1.0
1j_particle.translate(pos)
self.add(1lj_particle)

(continues on next page)

12



monolLJ =

(continued from previous page)

pattern_disk = mb.DiskPattern(200)

pattern_disk.scale(0.5)

for pos in pattern_disk:
1j_particle = mb.clone(lj_proto)
pos[0]+=1.0
1j_particle.translate(pos)
self.add(1j_particle)

MonoLJ ()

monoLJ.visualize ()

We can also take advantage of the hierachical nature of mBuild to accomplish the same task more
cleanly. Below we create a component that corresponds to the sphere (class Spherel]), and one that
corresponds to the disk (class DiskL]), and then instantiate and shift each of these individually in the
MonoL] component.

import mbuild as mb

class SphereLJ(mb.Compound) :

def

__init_ (self):
super (SphereLJ, self).__init__Q
1j_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(200)
pattern_sphere.scale(0.5)

for pos in pattern_sphere:
1j_particle = mb.clone(lj_proto)
1j_particle.translate(pos)
self.add(1j_particle)

class DiskLJ(mb.Compound) :

def

__init__(self):
super (DiskLJ, self).__init__()
1j_proto = mb.Particle(name='LJ"', pos=[0, 0, 0])

pattern_disk = mb.DiskPattern(200)

pattern_disk.scale(0.5)

for pos in pattern_disk:
1j_particle = mb.clone(lj_proto)
1j_particle.translate(pos)
self.add(1j_particle)

class MonoLJ(mb.Compound) :

def

__init__(self):
super (MonoLJ, self).__init__()

sphere = SphereLJ();
pos=[-1, 0, 0]
sphere.translate(pos)
self.add(sphere)

disk = DiskLJQ);
pos=[1, 0, 0]
disk.translate(pos)
self.add(disk)

(continues on next page)
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(continued from previous page)

monoLJ = MonoLJ()
monoLJ.visualize()

Again, since mBuild is hierarchical, the pattern functions can be used to generate large systems of any
arbitary component. For example, we can replicate the Spherel] component on a regular array.

import mbuild as mb

class SphereLJ(mb.Compound) :
def _init__(self):
super (SpherelJ, self).__init__QO
1j_proto = mb.Particle(name='LJ', pos=[0, 0, 0])

pattern_sphere = mb.SpherePattern(13)
pattern_sphere.scale(0.1)

for pos in pattern_sphere:
1j_particle = mb.clone(lj_proto)
1j_particle.translate(pos)
self.add(1lj_particle)

class MonoLJ(mb.Compound) :
def _init (self):
super (MonoLJ, self).__init__()
sphere = SphereLJ();

pattern = mb.Grid3DPattern(3, 3, 3)
pattern.scale(2)

for pos in pattern:
1j_sphere = mb.clone(sphere)
1j_sphere.translate_to(pos)
#shift the particle so the center of mass
#of the system is at the origin
1j_sphere.translate([-5,-5,-5])

self.add(1j_sphere)

monoLJ = MonoLJ()
monoLJ.visualize ()

Several functions exist for rotating compounds. For example, the spin command allows a compound
to be rotated, in place, about a specific axis (i.e., it considers the origin for the rotation to lie at the
compound’s center of mass).

import mbuild as mb
import random
from numpy import pi

class CubeLJ(mb.Compound) :
def _init_ (self):
super (CubeLJ, self).__init__()
1j_proto = mb.Particle(name='LJ"', pos=[0, 0, 0])

pattern = mb.Grid3DPattern(2, 2, 2)
pattern.scale(0.2)

(continues on next page)
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(continued from previous page)

for pos in pattern:
1j_particle = mb.clone(lj_proto)
1j_particle.translate(pos)
self.add(1j_particle)

class MonoLJ(mb.Compound) :
def _init__(self):
super (MonoLJ, self).__init__()
cube_proto = CubeLJ();

pattern = mb.Grid3DPattern(3, 3, 3)
pattern.scale(2)

rnd = random.Random()

rnd.seed(123)

for pos in pattern:
1j_cube = mb.clone(cube_proto)
1j_cube.translate_to(pos)
#shift the particle so the center of mass
#of the system is at the origin
1j_cube.translate([-5,-5,-5])
1j_cube.spin( rnd.uniform(0, 2 * pi), [1, 0, 0])
1j_cube.spin(rnd.uniform(0, 2 * pi), [0, 1, 0])
1j_cube.spin(rnd.uniform(0, 2 * pi), [0, 0, 11)

self.add(1j_cube)

monoLJ = MonoLJ()
monoLJ.visualize ()

Configurations can be dumped to file using the save command; this takes advantage of MDTraj and
supports a range of file formats (see http://MDTraj.org).

#save as xyz file
monoLJ.save ('output.xyz')
#save as mol2

monoLJ . save ('output.mol2')

...................................................................................... docs/tutorials/tutorial_simple_LJ.ipynb ends here.

The following section was generated from docs/tutorials/tutorial _polymers.ipynb ............iiiiiiiiiiiiiiiiiiiiii i,

3.5 Building a Simple Alkane

The purpose of this tutorial is to demonstrate the construction of an alkane polymer and provide
familiarity with many of the underlying functions in mBuild. Note that a robust polymer construction
recipe already exists in mBuild, which will also be demonstrated at the end of the tutorial.

Setting up the monomer

The first step is to construct the basic repeat unit for the alkane, i.e., a CH, group, similar to the
construction of the CH3 monomer in the prior methane tutorial. Rather than importing the coordinates
from a pdb file, as in the previous example, we will instead explicitly define them in the class. Recall
that distance units are nm in mBuild.
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import mbuild as mb

class CH2(mb.Compound) :
def _init (self):
super (CH2, self).__init__(Q)
# Add carbon
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]")

# Add hydrogens
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]")

# Add bonds between the atoms
self.add_bond((self['C'][0], self['HC'][0]))
self.add_bond((self['C'][0], self['HC'][1]))

# Add ports anchored to the carbon
self.add(mb.Port(anchor=self[0]), label='up')
self.add(mb.Port (anchor=self[0]), label='down')

# Move the ports approximately half a C-C bond length away from the carbon
self['up'].translate([0, -0.154/2, 0])
self['down'] .translate([0, 0.154/2, 0])

monomer = CH2()
monomer . visualize (show_ports=True)

This configuration of the monomer is not a particularly realistic conformation. One could use this
monomer to construct a polymer and then apply an energy minimization scheme, or, as we will
demonstrate here, we can use mBuild’s rotation commands to provide a more realistic starting point.

Below, we use the same basic script, but now apply a rotation to the hydrogen atoms. Since the
hydrogens start 180° apart and we know they should be ~109.5° apart, each should be rotated half of
the difference closer to each other around the y-axis. Note that the rotation angle is given in radians.
Similarly, the ports should be rotated around the x-axis by the same amount so that atoms can be
added in a realistic orientation.

import numpy as np
import mbuild as mb

class CH2(mb.Compound) :
def _init__(self):
super (CH2, self).__init__()
# Add carbon
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]"')

# Add hydrogens
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]")
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')

# Rotate the hydrogens

theta = 0.5 * (180 - 109.5) * np.pi / 180
#mb.rotate(self['HC'] [0], theta, around=[0, 1, 0])
#mb.rotate(self['HC'][1], -theta, around=[0, 1, 0])
self ['HC'] [0] .rotate( theta, around=[0, 1, 0])
self['HC'] [1] .rotate(-theta, around=[0, 1, 0])

# Add bonds between the atoms

self.add_bond((self['C'][0], self['HC'][0]))
(continues on next page)
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(continued from previous page)

self.add bond((self['C'][0], self['HC'][1]))

# Add the ports and appropriately rotate them
self.add(mb.Port (anchor=self [0]), label='up')
self['up'].translate([0, -0.154/2, 0])
self['up'] .rotate(theta, around=[1, 0, 0])

self.add(mb.Port (anchor=self[0]), label='down')
self['down'].translate([0, 0.154/2, 0])
self ['down'] .rotate(-theta, around=[1, 0, 0])

monomer = CH2()
monomer . visualize (show_ports=True)

Defining the polymerization class

With a basic monomer construct, we can now construct a polymer by connecting the ports together.
Here, we first instantiate one instance of the CHz2 class as 1ast_monomer, then use the clone function to
make a copy. The force_overlap() function is used to connect the 'up' port from current_monomer
to the 'down' port of last_mononer.

class AlkanePolymer(mb.Compound):
def _init_ (self):
super (AlkanePolymer, self).__init__Q
last_monomer = CH2()
self.add(last_monomer)
for i in range(3):
current _monomer = CH2()
mb.force_overlap(move_this=current_monomer,
from_positions=current_monomer['up'],
to_positions=last_monomer['down'])
self.add(current_monomer)
last_monomer = current_monomer

polymer = AlkanePolymer ()
polymer.visualize (show_ports=True)

Visualization of this structure demonstrates a problem; the polymer curls up on itself. This is a result
of the fact that ports not only define the location in space, but also an orientation. This can be trivially
fixed, by rotating the down port 180° around the y-axis.

We can also add a variable chain_length both to the for loop and init that will allow the length of
the polymer to be adjusted when the class is instantiated.

import numpy as np
import mbuild as mb

class CH2(mb.Compound) :
def __init__(self):
super (CH2, self).__init__()
# Add carbons and hydrogens
self.add(mb.Particle(name='C', pos=[0,0,0]), label='C[$]")
self.add(mb.Particle(name='H', pos=[-0.109, 0, 0.0]), label='HC[$]')
self.add(mb.Particle(name='H', pos=[0.109, 0, 0.0]), label='HC[$]')

# rotate hydrogens

theta = 0.5 * (180 - 109.5) * np.pi / 180
(continues on next page)
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self['HC'] [0] .rotate(theta, around=[0, 1, 0])
self ['HC'] [1] .rotate(-theta, around=[0, 1, 0])

# Add bonds between the atoms
self.add_bond((self['C'][0], self['HC'][0]))
self.add_bond((self['C'][0], self['HC'][1]))

# Add ports

self.add(mb.Port (anchor=self[0]), label='up')
self['up'].translate([0, -0.154/2, 0])
self['up'].rotate(theta, around=[1, 0, 0])

self.add(mb.Port (anchor=self[0]), label='down')
self['down'] .translate([0, 0.154/2, 0])
self['down'] .rotate(np.pi, [0, 1, 0])

self ['down'] .rotate(-theta, around=[1, 0, 0])

class AlkanePolymer (mb.Compound) :
def __init__(self, chain_length=1):
super (AlkanePolymer, self)._ _init__()
last_monomer = CH2()
self.add(last_monomer)
for i in range (chain_length-1):
current_monomer = CH2()

mb.force_overlap(move_this=current_monomer,
from_positions=current_monomer['up'],
to_positions=last_monomer['down'])

self.add(current_monomer)

last_monomer=current_monomer

polymer = AlkanePolymer(chain_length=10)
polymer.visualize (show_ports=True)

Using mBuild’s Polymer Class

mBuild provides a prebuilt class to perform this basic functionality. Since it is designed to be more
general, it takes as an argument not just the chain length, but also the monomer and the port labels
(e.g., ‘up” and ‘down’, since these labels are user defined).

polymer = mb.lib.recipes.Polymer(CH2(), 10, port_labels=('up', 'down'))
polymer.visualize ()

Building a System of Alkanes

A system of alkanes can be constructed by simply cloning the polymer constructed above and trans-
lating and/or rotating the alkanes in space. mBuild provides many routines that can be used to create
different patterns, to which the polymers can be shifted.

# create the polymer
polymer = mb.lib.recipes.Polymer(CH2(), 10, port_labels=('up', 'down'))

# the pattern we generate puts points in the xy-plane, so we'll rotate the polymer

# so that it is oriented normal to the xy-plane

(continues on next page)
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polymer.rotate(np.pi/2, [1, 0, 0])

# define a compound to hold all the polymers
system = mb.Compound()

# create a pattern of points to fill a disk

# patterns are generated between 0O and 1,

# and thus need to be scaled to provide appropriate spacing
pattern_disk = mb.DiskPattern(50)

pattern_disk.scale(5)

# now clone the polymer and move it to the points in the pattern
for pos in pattern_disk:
current_polymer = mb.clone(polymer)
current_polymer.translate(pos)
system.add (current_polymer)

system.visualize()

Other patterns can be used, e.g., the Grid3DPattern. We can also use the rotation commands to
randomize the orientation.

import random

polymer = mb.lib.recipes.Polymer(CH2(), 10, port_labels=('up', 'down'))
system = mb.Compound()
polymer.rotate(np.pi/2, [1, 0, 0])

pattern_disk = mb.Grid3DPattern(5, 5, 5)
pattern_disk.scale(8.0)

for pos in pattern_disk:
current_polymer = mb.clone(polymer)
for around in [(1, O, 0), (0, 1, 0), (O, O, 1)]: # rotate around x, y, and z
current_polymer.rotate(random.uniform(0, np.pi), around)
current_polymer.translate (pos)
system.add(current_polymer)

system.visualize()

mBuild also provides an interface to PACKMOL, allowing the creation of a randomized configuration.

polymer = mb.lib.recipes.Polymer(CH2(), 5, port_labels=('up', 'down'))
system = mb.fill_box(polymer, n_compounds=100, overlap=1.5, box=[10,10,10])
system.visualize()

Variations

Rather than a linear chain, the Polymer class we wrote can be easily changed such that small perturba-
tions are given to each port. To avoid accumulation of deviations from the equilibrium angle, we will
clone an unperturbed monomer each time (i.e., nonomer_proto) before applying a random variation.

We also define a variable delta, which will control the maximum amount of perturbation. Note that
large values of delta may result in the chain overlapping itself, as mBuild does not currently include
routines to exclude such overlaps.
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import mbuild as mb
import random

class AlkanePolymer (mb.Compound) :
def __init__(self, chain_length=1, delta=0):
super (AlkanePolymer, self).__init__Q)
monomer_proto = CH2()
last_monomer = CH2()
last_monomer['down'].rotate(random.uniform(-delta,delta), [1, O, 0])
last_monomer['down'].rotate(random.uniform(-delta,delta), [0, 1, 0])
self.add(last_monomer)
for i in range(chain_length-1):
current_monomer = mb.clone(monomer_proto)
current_monomer [ 'down'] .rotate(random.uniform(-delta,delta), [1, O, 0])
current_monomer [ 'down'] .rotate(random.uniform(-delta,delta), [0, 1, 0])
mb.force_overlap(move_this=current_monomer,
from_positions=current_monomer['up'],
to_positions=last_monomer['down'])
self.add(current_monomer)
last_monomer=current_monomer

polymer = AlkanePolymer(chain_length = 200, delta=0.4)
polymer.visualize ()

....................................................................................... docs/tutorials/tutorial_polymers.ipynb ends here.

4 Data Structures

The primary building blocks in an mBuild hierarchy inherit from the Compound class. Compounds
maintain an ordered set of children which are other Compounds. In addition, an independent, or-
dered dictionary of labels is maintained through which users can reference any other Compound in
the hierarchy via descriptive strings. Every Compound knows its parent Compound, one step up in
the hierarchy, and knows which Compounds reference it in their labels. Ports are a special type of
Compound which are used internally to connect different Compounds using the equivalence transfor-
mations described below.

Compounds at the bottom of an mBuild hierarchy, the leafs of the tree, are referred to as Particles and
can be instantiated as foo = mb.Particle(name='bar'). Note however, that this merely serves to
illustrate that this Compound is at the bottom of the hierarchy; Particle is simply an alias for Compound
which can be used to clarify the intended role of an object you are creating. The method Compound.
particles() traverses the hierarchy to the bottom and yields those Compounds. Compound.root ()
returns the compound at the top of the hierarchy.
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4.1 Compound

4.2 Port
4.3 Box

4.4 Lattice

5 Coordinate transformations

The following utility functions provide mechanisms for spatial transformations for mbuild com-

pounds:

6 Recipes

6.1 Monolayer

6.2 Polymer

6.3 Tiled Compound

6.4 Silica Interface

6.5 Packing

6.6 Pattern

7 Citing mBuild
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